Minimal Obstructions for Partial Representations of Interval Graphs

Interval graphs are intersection graphs of closed intervals. A generalization of recognition called partial representation extension was introduced recently. The input gives an interval graph with a partial representation specifying some pre-drawn intervals. We ask whether the remaining intervals can be added to create an extending representation. Two linear-time algorithms are known for solving this problem. In this paper, we characterize the minimal obstructions which make partial representations non-extendible. This generalizes Lekkerkerker and Boland's characterization of the minimal forbidden induced subgraphs of interval graphs. Each minimal obstruction consists of a forbidden induced subgraph together with at most four pre-drawn intervals. A Helly-type result follows: A partial representation is extendible if and only if every quadruple of pre-drawn intervals is extendible by itself. Our characterization leads to a linear-time certifying algorithm for partial representation extension.

[1]  Richard M. Karp,et al.  Mapping the genome: some combinatorial problems arising in molecular biology , 1993, STOC.

[2]  Yota Otachi,et al.  Linear-time Algorithm for Partial Representation Extension of Interval Graphs , 2013, ArXiv.

[3]  D. R. Fulkerson,et al.  Incidence matrices and interval graphs , 1965 .

[4]  Pavel Klavík,et al.  Minimal Obstructions for Partial Representations of Interval Graphs , 2014, ISAAC.

[5]  Kellogg S. Booth,et al.  Testing for the Consecutive Ones Property, Interval Graphs, and Graph Planarity Using PQ-Tree Algorithms , 1976, J. Comput. Syst. Sci..

[6]  Pavel Klav ´ ik Extending Partial Representations of Interval Graphs , 2012 .

[7]  C. Lekkeikerker,et al.  Representation of a finite graph by a set of intervals on the real line , 1962 .

[8]  Yota Otachi,et al.  Bounded Representations of Interval and Proper Interval Graphs , 2013, ISAAC.

[9]  Yota Otachi,et al.  Extending Partial Representations of Proper and Unit Interval Graphs , 2012, Algorithmica.

[10]  Paul Dorbec,et al.  Contact Representations of Planar Graphs: Extending a Partial Representation is Hard , 2014, WG.

[11]  Pavel Klavík,et al.  Extending Partial Representations of Circle Graphs , 2013, Graph Drawing.

[12]  Jan Kratochvíl,et al.  Testing planarity of partially embedded graphs , 2010, SODA '10.

[13]  Ron Shamir,et al.  Realizing Interval Graphs with Size and Distance Constraints , 1997, SIAM J. Discret. Math..

[14]  Ignaz Rutter,et al.  Simultaneous PQ-Ordering with Applications to Constrained Embedding Problems , 2011, SODA.

[15]  Francisco J. Soulignac Minimal and short representations of unit interval and unit circular-arc graphs , 2014, ArXiv.

[16]  Jan Kratochvíl,et al.  A kuratowski-type theorem for planarity of partially embedded graphs , 2011, SoCG '11.

[17]  Ross M. McConnell,et al.  On Finding Tucker Submatrices and Lekkerkerker-Boland Subgraphs , 2013, WG.

[18]  Charles J. Colbourn,et al.  Linear Time Automorphism Algorithms for Trees, Interval Graphs, and Planar Graphs , 1981, SIAM J. Comput..

[19]  Maurizio Patrignani On Extending a Partial Straight-Line Drawing , 2005, Graph Drawing.

[20]  Dale Skrien Chronological orderings of interval graphs , 1984, Discret. Appl. Math..

[21]  Robert E. Tarjan,et al.  Algorithmic Aspects of Vertex Elimination on Graphs , 1976, SIAM J. Comput..

[22]  Peter C. Fishburn A characterization of uniquely representable interval graphs , 1985, Discret. Appl. Math..

[23]  Jan Kratochvíl,et al.  A Kuratowski-type theorem for planarity of partially embedded graphs , 2013, Comput. Geom..

[24]  Yota Otachi,et al.  Extending Partial Representations of Subclasses of Chordal Graphs , 2012, ISAAC.

[25]  Rolf H. Möhring,et al.  An Incremental Linear-Time Algorithm for Recognizing Interval Graphs , 1989, SIAM J. Comput..

[26]  Ross M. McConnell,et al.  Linear-Time Algorithms for Finding Tucker Submatrices and Lekkerkerker-Boland Subgraphs , 2016, SIAM J. Discret. Math..

[27]  K. Stoffers Scheduling of traffic lights—A new approach☆ , 1968 .

[28]  John M. Lewis,et al.  The Node-Deletion Problem for Hereditary Properties is NP-Complete , 1980, J. Comput. Syst. Sci..

[29]  F. Roberts Discrete Mathematical Models with Applications to Social, Biological, and Environmental Problems. , 1976 .

[30]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[31]  Yota Otachi,et al.  Extending Partial Representations of Interval Graphs , 2011, Algorithmica.

[32]  Stephan Olariu,et al.  The LBFS Structure and Recognition of Interval Graphs , 2009, SIAM J. Discret. Math..

[33]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[34]  S. Benzer ON THE TOPOLOGY OF THE GENETIC FINE STRUCTURE. , 1959, Proceedings of the National Academy of Sciences of the United States of America.

[35]  Pavel Klavík,et al.  Extending Partial Representations of Function Graphs and Permutation Graphs , 2012, ESA.

[36]  Peter C. Fishburn,et al.  Interval graphs and interval orders , 1985, Discret. Math..

[37]  D. Kendall Incidence matrices, interval graphs and seriation in archeology. , 1969 .

[38]  P. Hanlon Counting interval graphs , 1982 .