A survey of animal foraging for directed, persistent search by rescue robotics

This paper reviews the animal foraging literature for insights into the directed, persistent search problem in rescue robotics, where a robot may have to move away from a target or out of sensing range in order to find a path to it. The conclusions from 32 papers on empirical studies of insects, fish and birds, mammals, and 20 studies exploring theoretical models are that: robots should divide the environment into patches, they should follow a win-stay search strategy within a patch, use either a sensory- or pattern-based search algorithm, should adapt the algorithm to travel distance, total search time, physical obstacles, and availability of sensory information, and persistence should have a fixed time limit unless sensory information is available. The survey is expected to enable rescue roboticists to create better, or improve existing, search strategies and algorithms.

[1]  A S Etienne,et al.  Path integration in mammals and its interaction with visual landmarks. , 1996, The Journal of experimental biology.

[2]  Raymond J. O'Connor,et al.  Optimal foraging in an amphibious mammal. I. The aqualung effect , 1979, Animal Behaviour.

[3]  Larry B. Crowder,et al.  Bluegills continuously update patch giving-up times based on foraging experience , 1994, Animal Behaviour.

[4]  T. Collett,et al.  Insect navigation en route to the goal: multiple strategies for the use of landmarks , 1996, The Journal of experimental biology.

[5]  Keith D. Farnsworth,et al.  Animal foraging from an individual perspective: an object orientated model , 1998 .

[6]  S. Luke,et al.  Ant Foraging Revisited , 2004 .

[7]  M. Pienkowski,et al.  Changes in the foraging pattern of plovers in relation to environmental factors , 1983, Animal Behaviour.

[8]  R Wehner,et al.  Path integration in desert ants, Cataglyphis fortis. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[9]  Theodore H. Fleming,et al.  Foraging Patterns and Resource Utilization in Seven Species of Bats in a Seasonal Tropical Forest , 1975 .

[10]  Maja J. Matarić,et al.  Navigating with a rat brain: a neurobiologically-inspired model for robot spatial representation , 1991 .

[11]  T. Collett,et al.  The use of visual landmarks by honeybees: Bees weight landmarks according to their distance from the goal , 1987, Journal of Comparative Physiology A.

[12]  Bernd Heinrich,et al.  Resource heterogeneity and patterns of movement in foraging bumblebees , 2004, Oecologia.

[13]  Phil Husbands,et al.  Ant Foraging Revisited , 2004 .

[14]  Robin R. Murphy Biomimetic search for urban search and rescue , 2000, Proceedings. 2000 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2000) (Cat. No.00CH37113).

[15]  Ulrich Nehmzow,et al.  Animal and robot navigation , 1995, Robotics Auton. Syst..

[16]  James N. McNair,et al.  Optimal Giving-Up Times and the Marginal Value Theorem , 1982, The American Naturalist.

[17]  E. Gaffan,et al.  The Role of Exploration in Win-Shift and Win-Stay Performance on a Radial Maze. , 1981 .

[18]  J. Traniello Foraging Strategies of Ants , 1989 .

[19]  Michael P. Hassell,et al.  Foraging Strategies of Insects , 1978 .

[20]  G. Pyke Optimal Foraging Theory: A Critical Review , 1984 .

[21]  T. Seeley,et al.  FORAGING STRATEGY OF HONEYBEE COLONIES IN A TEMPERATE DECIDUOUS FOREST , 1982 .

[22]  Frederic Bartumeus,et al.  LÉVY PROCESSES IN ANIMAL MOVEMENT: AN EVOLUTIONARY HYPOTHESIS , 2007 .

[23]  S. Hubbard,et al.  OPTIMAL FORAGING BY PARASITOID WASPS , 1978 .

[24]  A Houston,et al.  The application of statistical decision theory to animal behaviour. , 1980, Journal of theoretical biology.

[25]  W. J. Bell Searching Behavior Patterns in Insects , 1990 .

[26]  M. Lehrer Why do bees turn back and look? , 1993, Journal of Comparative Physiology A.

[27]  J. Cass,et al.  Win-shift and win-stay learning in the short-beaked echidna (Tachyglossus aculeatus) , 2002, Animal Cognition.

[28]  A. S. Etienne,et al.  Dead reckoning in a small mammal: the evaluation of distance , 1993, Journal of Comparative Physiology A.

[29]  M. Srinivasan,et al.  Searching behaviour of desert ants, genusCataglyphis (Formicidae, Hymenoptera) , 2004, Journal of comparative physiology.

[30]  Paul Schmid-Hempel,et al.  Individually different foraging methods in the desert ant Cataglyphis bicolor (Hymenoptera, Formicidae) , 1984, Behavioral Ecology and Sociobiology.

[31]  T. Grubb,et al.  Sparrows and a brushpile: Foraging responses to different combinations of predation risk and energy cost , 1982, Animal Behaviour.

[32]  Frederic Bartumeus,et al.  ANIMAL SEARCH STRATEGIES: A QUANTITATIVE RANDOM‐WALK ANALYSIS , 2005 .

[33]  T. Schoener Simple Models of Optimal Feeding-Territory Size: A Reconciliation , 1983, The American Naturalist.

[34]  Candace Galen,et al.  Landmarks or obstacles: the effects of spatial heterogeneity on bumble bee foraging behavior , 1985 .

[35]  Rudolf Jander,et al.  Short-range homing in the house mouse, Mus musculus: stages in the learning of directions , 1994, Animal Behaviour.

[36]  T. S. Collett,et al.  Landmark learning in bees , 1983, Journal of comparative physiology.

[37]  R. Pfeifer,et al.  A mobile robot employing insect strategies for navigation , 2000, Robotics Auton. Syst..

[38]  D. Fraser,et al.  Predation and Risk in Foraging Minnows: Balancing Conflicting Demands , 1983, The American Naturalist.

[39]  R. Bernstein,et al.  FORAGING STRATEGIES OF ANTS IN RESPONSE TO VARIABLE FOOD DENSITY , 1975 .

[40]  E. Pianka,et al.  Animal foraging: past, present and future. , 1997, Trends in ecology & evolution.

[41]  Simon Benhamou,et al.  How many animals really do the Lévy walk? , 2008, Ecology.

[42]  J. Gutiérrez,et al.  SMALL‐MAMMAL FORAGING BEHAVIOR: MECHANISMS FOR COEXISTENCE AND IMPLICATION FOR POPULATION DYNAMICS , 2002 .

[43]  Robin R. Murphy,et al.  Human-robot interaction in rescue robotics , 2004, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews).

[44]  Scott K. Robinson,et al.  Foraging Behavior of Forest Birds: The Relationships Among Search Tactics, Diet, and Habitat Structure , 1982 .

[45]  R. Murphy,et al.  Up from the Rubble: Lessons Learned about HRI from Search and Rescue , 2005 .

[46]  William A. Montevecchi,et al.  SEARCH STRATEGIES OF A PURSUIT-DIVING MARINE BIRD AND THE PERSISTENCE OF PREY PATCHES , 2003 .

[47]  S. MacDonald,et al.  Marmoset (Callithrix jacchus jacchus) spatial memory in a foraging task: win-stay versus win-shift strategies. , 1994, Journal of comparative psychology.

[48]  Richard F. Green,et al.  Stopping Rules for Optimal Foragers , 1984, The American Naturalist.

[49]  Hanspeter A. Mallot,et al.  Biomimetic robot navigation , 2000, Robotics Auton. Syst..

[50]  Nigel R. Franks,et al.  Spatial patterns in army ant foraging and migration: Eciton burchelli on Barro Colorado Island, Panama , 1983, Behavioral Ecology and Sociobiology.

[51]  E J Milner-Gulland,et al.  Optimal movement strategies for social foragers in unpredictable environments. , 2006, Ecology.

[52]  Benjamin Kuipers,et al.  A robot exploration and mapping strategy based on a semantic hierarchy of spatial representations , 1991, Robotics Auton. Syst..

[53]  H. Roitblat,et al.  The ecology of foraging behavior: implications for animal learning and memory. , 1985, Annual review of psychology.

[54]  Lauri Oksanen,et al.  Optimization of reproductive effort and foraging time in mammals: The influence of resource level and predation risk , 2005, Evolutionary Ecology.

[55]  R. Wehner,et al.  Visual navigation in insects: coupling of egocentric and geocentric information , 1996, The Journal of experimental biology.

[56]  R. Wehner,et al.  Ant Navigation: One-Way Routes Rather Than Maps , 2006, Current Biology.

[57]  E. Charnov Optimal foraging, the marginal value theorem. , 1976, Theoretical population biology.

[58]  D. Olton,et al.  Food-searching strategies in young rats: Win-shift predominates over win-stay. , 1978 .

[59]  Bernard Dacorogna,et al.  Optimal Foraging on Arbitrary Food Distributions and the Definition of Habitat Patches , 1988, The American Naturalist.

[60]  B. Evans,et al.  Flexible search tactics and efficient foraging in saltatory searching animals , 1989, Oecologia.

[61]  M. Posch,et al.  Win-stay, lose-shift strategies for repeated games-memory length, aspiration levels and noise. , 1999, Journal of theoretical biology.