Comparison of partial least squares regression and multi-layer neural networks for quantification of nonlinear systems and application to gas phase Fourier transform infrared spectra

[1]  B. Kowalski,et al.  Partial least-squares regression: a tutorial , 1986 .

[2]  S. Wold,et al.  Nonlinear PLS modeling , 1989 .

[3]  I. E. Frank A nonlinear PLS model , 1990 .

[4]  S. Wold Nonlinear partial least squares modelling II. Spline inner relation , 1992 .

[5]  Bruce R. Kowalski,et al.  Nonlinear Multivariate Calibration Methods in Analytical Chemistry , 1993 .

[6]  P. Geladi,et al.  An Overview of Chemometrics Applications in near Infrared Spectrometry , 1995 .

[7]  P. Griffiths,et al.  Evaluation of a Correction for Photometric Errors in FT-IR Spectrometry Introduced by a Nonlinear Detector Response , 1998 .

[8]  P. Hopke,et al.  Multiple regression for environmental data: nonlinearities and prediction bias , 1999 .

[9]  Huwei Tan,et al.  ROBUST COMPLEX NON-LINEAR REGRESSION METHOD FOR THE ESTIMATION OF EQUIVALENT CIRCUIT PARAMETERS OF THE THICKNESS-SHEAR-MODE ACOUSTIC WAVE SENSOR , 1999 .

[10]  Paul Geladi,et al.  A comparison of modeling nonlinear systems with artificial neural networks and partial least squares , 1999 .

[11]  Chris W. Brown,et al.  Near Infrared Spectroscopic Determination of Alcohols—Solving Non-Linearity with Linear and Non-Linear Methods , 1999 .

[12]  Luis A. Sarabia,et al.  Handling intrinsic non-linearity in near-infrared reflectance spectroscopy , 1999 .

[13]  Lutgarde M. C. Buydens,et al.  Strategy for constructing robust multivariate calibration models , 1999 .

[14]  Beata Walczak,et al.  Comparison of Multivariate Calibration Techniques Applied to Experimental NIR Data Sets , 2000 .

[15]  Tormod Næs,et al.  A user-friendly guide to multivariate calibration and classification , 2002 .