계층적 클러스터링 기법을 이용한 확장 불리언 모델의 적합성 피드백 방법

적합성 피드백 방법은 다음 검색 질의어와 검색 성능을 향상시키기 위해 사용자로부터 획득된 정보를 사용한다. 일반적으로 적합성 피드백 방법은 사용자로부터 획득된 정보를 새로운 질의어에 추가될 새로운 단어를 찾거나 질의어에 존재하는 단어의 가중치를 조정하는데 사용한다. 그러나 확장 불리언 검색 모델에서 적합성 피드백은 이것들뿐만 아니라 질의어에 있는 단어들을 적절하게 불리언 연산자(AND/OR)로 연결시켜야 한다. Salton과 그의 동료들은 확장 불리언 모델을 위한 DNF(disjunctive normal form)방법이라 불리는 적합성 피드백 방법을 제안하였다. 그렇지만 이 방법은 질의어를 재구성할 때 심각한 문제점을 갖고 있다. 이 논문에서는 DNF 방법의 문제점을 조사하고 이러한 문제점을 극복하기 위해 계층적 클러스터링 기법을 이용한 적합성 피드백 방법을 제안한다. 그리고 두개의 실험 데이타 집합인 TREC 1의 DOE 컬렉션과 Web TREC 10 컬렉션을 이용하여 제안한 방법의 우수성을 보였다.