Submanifold Sparse Convolutional Networks

Convolutional network are the de-facto standard for analysing spatio-temporal data such as images, videos, 3D shapes, etc. Whilst some of this data is naturally dense (for instance, photos), many other data sources are inherently sparse. Examples include pen-strokes forming on a piece of paper, or (colored) 3D point clouds that were obtained using a LiDAR scanner or RGB-D camera. Standard "dense" implementations of convolutional networks are very inefficient when applied on such sparse data. We introduce a sparse convolutional operation tailored to processing sparse data that differs from prior work on sparse convolutional networks in that it operates strictly on submanifolds, rather than "dilating" the observation with every layer in the network. Our empirical analysis of the resulting submanifold sparse convolutional networks shows that they perform on par with state-of-the-art methods whilst requiring substantially less computation.

[1]  Kilian Q. Weinberger,et al.  Densely Connected Convolutional Networks , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[2]  Jian Sun,et al.  Identity Mappings in Deep Residual Networks , 2016, ECCV.

[3]  Leonidas J. Guibas,et al.  Volumetric and Multi-view CNNs for Object Classification on 3D Data , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[4]  Ben Graham,et al.  Sparse 3D convolutional neural networks , 2015, BMVC.

[5]  Dushyant Rao,et al.  Vote3Deep: Fast object detection in 3D point clouds using efficient convolutional neural networks , 2016, 2017 IEEE International Conference on Robotics and Automation (ICRA).

[6]  Zhuowen Tu,et al.  Aggregated Residual Transformations for Deep Neural Networks , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[7]  Gernot Riegler,et al.  OctNet: Learning Deep 3D Representations at High Resolutions , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[8]  Andrew Zisserman,et al.  Very Deep Convolutional Networks for Large-Scale Image Recognition , 2014, ICLR.

[9]  Yann LeCun,et al.  Optimal Brain Damage , 1989, NIPS.

[10]  Dumitru Erhan,et al.  Going deeper with convolutions , 2014, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[11]  Graham W. Taylor,et al.  Deconvolutional networks , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[12]  Fei Yin,et al.  CASIA Online and Offline Chinese Handwriting Databases , 2011, 2011 International Conference on Document Analysis and Recognition.