Congruences for Hyper m-ary Overpartition Functions

Abstract We discuss a new restricted m-ary overpartition function , which is the number of hyper m-ary overpartitions of n, such that each power of m is allowed to be used at most m times as a non-overlined part. In this note we use generating function dissections to prove the following family of congruences for all n ≥ 0, m ≥ 4, j ≥ 0, 3 ≤ k ≤ m – 1, and t ≥ 1:

[1]  Øystein J. Rødseth,et al.  On m-Ary Overpartitions , 2005 .

[2]  Qing-Lin Lu,et al.  On a restricted m-ary partition function , 2004, Discret. Math..

[3]  Øystein J. Rødseth,et al.  On m-ary Partition Function Congruences: A Fresh Look at a Past Problem , 2001 .

[4]  James A. Sellers,et al.  Congruences for a restricted m-ary partition function , 2000, Discret. Math..

[5]  Gunnar Dirdal Congruences for $m$-ary partitions. , 1975 .

[6]  Gunnar Dirdal On restricted $m$-ary partitions. , 1975 .

[7]  H. Gupta On m-ary partitions , 1972, Mathematical Proceedings of the Cambridge Philosophical Society.

[8]  G. Andrews Congruence properties of the m-ary partition function , 1971 .

[9]  Øystein J. Rødseth Some arithmetical properties of m-ary partitions , 1970, Mathematical Proceedings of the Cambridge Philosophical Society.

[10]  R. F. Churchhouse,et al.  Congruence properties of the binary partition function , 1969, Mathematical Proceedings of the Cambridge Philosophical Society.

[11]  James A. Sellers,et al.  Arithmetic properties for hyper -ary partition functions. , 2004 .