Ultrafast processes in radiation chemistry

Abstract Ultrafast ( −11  s) physical processes play a pivotal role in radiation-induced chemical reactions. Due to the lack of subpicosecond pulse radiolysis tools knowledge of these events is lacking. We describe the development of laser-based techniques that are designed to provide a source of femtosecond electron and X-ray pulses for chemical physics research. Terawatt laser systems have succeeded in relativistically accelerating subpicosecond electron bunches to energies greater than 5 MeV. The electron pulses generated this way are suitable for pulse radiolysis.

[1]  Catherine M. Herne,et al.  Phase matching of high-order harmonics in hollow waveguides , 1999, 2404.00071.

[2]  Charles G. Durfee,et al.  High power ultrafast lasers , 1998 .

[3]  M. Murnane,et al.  Phase-matched generation of coherent soft X-rays , 1998, Science.

[4]  A M MacLeod,et al.  Single-shot electron-beam bunch length measurements. , 2002, Physical review letters.

[5]  I. Christov,et al.  Shaped-pulse optimization of coherent emission of high-harmonic soft X-rays , 2000, Nature.

[6]  Kwanpyo Kim,et al.  Femtosecond X-ray Pulses at 0.4 Å Generated by 90° Thomson Scattering: A Tool for Probing the Structural Dynamics of Materials , 1996, Science.

[7]  Krishnan,et al.  Electron acceleration and the propagation of ultrashort high-intensity laser pulses in plasmas , 2000, Physical review letters.

[8]  Charles G. Durfee,et al.  Ultrafast laser and amplifier sources , 1997 .

[9]  Stanislas Pommeret,et al.  Femtochemistry of the Hydrated Electron at Decimolar Concentration , 2001 .

[10]  Eric Esarey,et al.  Electron Injection into Plasma Wake Fields by Colliding Laser Pulses , 1997 .

[11]  Glover,et al.  X-Ray Based Subpicosecond Electron Bunch Characterization Using 90 degrees Thomson Scattering. , 1996, Physical review letters.

[12]  P. Bartlett Studies in physical and theoretical chemistry : Vol. 55, semiconductor electrodes. H.O. Finklea (Editor). Elsevier, Amsterdam, 1988, xxii + 520 pp., Dfl.340.00, US$179.00 , 1988 .

[13]  Donald P. Umstadter,et al.  Generation of 10-W average-power, 40-TW peak-power, 24-fs pulses from a Ti:sapphire amplifier system , 1999 .

[14]  Michael D. Perry,et al.  Ultrahigh‐Intensity Lasers: Physics of the Extreme on a Tabletop , 1998 .

[15]  Driving laser pulse evolution in a laser wakefield accelerator , 1997, Proceedings of the 1997 Particle Accelerator Conference (Cat. No.97CH36167).

[16]  D. Bartels,et al.  Multiphoton Ionization of Liquid Water with 3.0−5.0 eV Photons† , 1996 .

[17]  Gerard Mourou,et al.  The ultrahigh-peak-power laser: present and future , 1997 .

[18]  New developments in laser acceleration of beams , 2001, PACS2001. Proceedings of the 2001 Particle Accelerator Conference (Cat. No.01CH37268).

[19]  Christopher I. Moore,et al.  Plasma wakefield generation and electron acceleration in a self-modulated laser wakefield accelerator experiment* , 1997 .

[20]  Kevin Bales,et al.  The social psychology of modern slavery. , 2002, Scientific American.

[21]  Oscar E. Martínez,et al.  Design of high-power ultrashort pulse amplifiers by expansion and recompression , 1987 .

[22]  Temporal Characterization of a Self-Modulated Laser Wakefield. , 1996 .

[23]  E. Treacy Optical pulse compression with diffraction gratings , 1969 .

[24]  G. Mourou,et al.  Nonlinear Optics in Relativistic Plasmas and Laser Wake Field Acceleration of Electrons , 1996, Science.

[25]  B. Le Motais,et al.  Sources of excited cyclohexane in the radiolysis of cyclohexane , 1988 .

[26]  N. Hafz,et al.  Numerical analysis of 10's femtosecond relativistic electron beam generation using single 12TW50fs laser pulse , 2000 .

[27]  G. Cox,et al.  A five-picosecond, electron pulse from the ANL L-band linac , 1989, Proceedings of the 1989 IEEE Particle Accelerator Conference, . 'Accelerator Science and Technology.

[28]  G. Baldacchino,et al.  The radiolysis project of CEA , 1999 .

[29]  M. Mostafavi,et al.  7 Radiation chemistry , 2000 .

[30]  G. Beddard,et al.  Pulse transform transient absorption spectroscopy , 1992 .

[32]  Shouyuan Chen,et al.  Detailed dynamics of electron beams self-trapped and accelerated in a self-modulated laser wakefield , 1999 .

[33]  Takahiro Kozawa,et al.  Development of subpicosecond pulse radiolysis system , 2000 .

[34]  Henry C. Kapteyn,et al.  Design and implementation of a TW-class high-average power laser system , 1998 .

[35]  Charles D. Jonah,et al.  Radiation Chemistry: Present Status and Future Trends , 2001 .

[36]  M M Murnane,et al.  Ti:sapphire amplifier producing millijoule-level, 21-fs pulses at 1 kHz. , 1995, Optics letters.

[37]  G. Kyrala,et al.  Applications of X rays generated from lasers and other bright sources II : 30-31 July 2001, San Diego, USA , 1997 .

[38]  Anatoly Maksimchuk,et al.  Experimental observation of relativistic nonlinear Thomson scattering , 1998, Nature.

[39]  Dodd,et al.  Laser injection of ultrashort electron pulses into Wakefield plasma waves. , 1996, Physical review letters.

[40]  Characteristics of electron acceleration in a self-modulated laser wakefield , 1999, Proceedings of the 1999 Particle Accelerator Conference (Cat. No.99CH36366).

[41]  J. A. Valdmanis,et al.  Chapter 4 Electro-Optic Measurement Techniques for Picosecond Materials, Devices, and Integrated Circuits , 1990 .

[42]  J. Wishart Accelerators for ultrafast phenomena , 2001 .

[43]  Gerard Mourou,et al.  Compression of amplified chirped optical pulses , 1985 .

[44]  Pascal Pernot,et al.  Interaction of terawatt laser pulses with neat water , 2000 .

[45]  Donald P. Umstadter,et al.  Pulse radiolysis of liquid water using picosecond electron pulses produced by a table-top terawatt laser system , 2000 .

[46]  Eric Esarey,et al.  Femtosecond x-rays from Thomson scattering using laser wakefield accelerators , 2001 .

[47]  Donald P. Umstadter,et al.  Physics and Applications of Relativistic Plasmas Driven by Ultra-intense Lasers , 2001 .

[48]  T. Norris,et al.  Nonlinear Optics With Relativistic Electrons [Guest Editorial] , 1997 .