Pozzolanic potentials and hydration behavior of ground waste clay brick obtained from clamp-firing technology

[1]  J. Kevern,et al.  Co-fired Ghanaian clay-palm kernel shells pozzolan: Thermogravimetric, 29Si and 27Al MA NMR characteristics , 2017 .

[2]  J. Weiss,et al.  Examining the pozzolanicity of supplementary cementitious materials using isothermal calorimetry and thermogravimetric analysis , 2017 .

[3]  J. S. Ankrah,et al.  Analysis of co-fired clay and palm kernel shells as a cementitious material in Ghana , 2016 .

[4]  R. Snellings,et al.  Rapid screening tests for supplementary cementitious materials: past and future , 2016 .

[5]  R. Ferron,et al.  Calcining natural zeolites to improve their effect on cementitious mixture workability , 2016 .

[6]  Karen L. Scrivener,et al.  Development of a new rapid, relevant and reliable (R3) test method to evaluate the pozzolanic reactivity of calcined kaolinitic clays , 2016 .

[7]  S. Zhou,et al.  Pozzolanic activity of volcanic rocks from Southern Jiangxi Province, China , 2016 .

[8]  J. S. Ankrah,et al.  Early and Late Strength Characterization of Portland Cement Containing Calcined Low-Grade Kaolin Clay , 2016 .

[9]  Mark Bediako,et al.  Maximizing the Sustainability of Cement Utilization in Building Projects through the Use of Greener Materials , 2016 .

[10]  A. Alhozaimy,et al.  Heat of hydration of concrete containing powdered scoria rock as a natural pozzolanic material , 2015 .

[11]  J. Kevern,et al.  Effect of Curing Environment on the Strength Properties of Cement and Cement Extenders , 2015 .

[12]  M. Juenger,et al.  Physical characterization methods for supplementary cementitious materials , 2014, Materials and Structures.

[13]  E. Atiemo,et al.  Influence of Higher Volumes of Clay Pozzolana Replacement Levels on Some Technical Properties of Cement Pastes and Mortars , 2014 .

[14]  Kyle A. Riding,et al.  Increasing the reactivity of metakaolin-cement blends using zinc oxide , 2012 .

[15]  K. Scrivener,et al.  Hydration of C3A–gypsum systems , 2012 .

[16]  B. Lothenbach,et al.  Supplementary cementitious materials , 2011 .

[17]  Karen Scrivener,et al.  The origin of the pozzolanic activity of calcined clay minerals: A comparison between kaolinite, illite and montmorillonite , 2011 .

[18]  Christopher R. Cheeseman,et al.  Comparison of test methods to assess pozzolanic activity , 2010 .

[19]  Kae‐Long Lin,et al.  Waste brick’s potential for use as a pozzolan in blended Portland cement , 2010, Waste management & research : the journal of the International Solid Wastes and Public Cleansing Association, ISWA.

[20]  Eduardo de Moraes Rego Fairbairn,et al.  Potential for use of crushed waste calcined-clay brick as a supplementary cementitious material in Brazil , 2007 .

[21]  Nasser Y. Mostafa,et al.  Heat of hydration of high reactive pozzolans in blended cements: Isothermal conduction calorimetry , 2005 .

[22]  L. Lam,et al.  A study on the hydration rate of natural zeolite blended cement pastes , 1999 .

[23]  Luigia Binda,et al.  The role of brick pebbles and dust in conglomerates based on hydrated lime and crushed bricks , 1997 .

[24]  M. Frías,et al.  The influence of different additions on portland cement hydration heat , 1993 .

[25]  A. Hammond Hydration products of bauxite-waste pozzolana cement , 1987 .