Gapless Hartree-Fock-Bogoliubov approximation for Bose gases
暂无分享,去创建一个
[1] D. Perepelitsa,et al. Path integrals in quantum mechanics , 2013 .
[2] H. Kleinert. Path Integrals in Quantum Mechanics, Statistics, Polymer Physics, and Financial Markets , 2006 .
[3] E. P. Yukalova,et al. Normal and anomalous averages for systems with Bose-Einstein condensate , 2005, cond-mat/0509103.
[4] A. Jensen,et al. Correlated Gaussian method for dilute bosonic systems , 2005 .
[5] Darmstadt,et al. Gapless Hartree-Fock resummation scheme for the O(N) model , 2005, hep-ph/0502146.
[6] T. Kita. Conserving gapless mean-field theory for bose-einstein condensates , 2004, cond-mat/0411296.
[7] J. Zinn-Justin. Path integrals in quantum mechanics , 2005 .
[8] V. Yukalov. Number-of-particle fluctuations in systems with Bose-Einstein condensate , 2005, cond-mat/0504473.
[9] K. Sengstock,et al. Physics with coherent matter waves , 2004, cond-mat/0403128.
[10] S. Morgan. Response of Bose-Einstein condensates to external perturbations at finite temperature , 2003, cond-mat/0307246.
[11] J. Andersen. Theory of the weakly interacting Bose gas , 2003, cond-mat/0305138.
[12] C. Pethick,et al. Bose–Einstein Condensation in Dilute Gases: Contents , 2008 .
[13] V. S. Bagnato,et al. Bose-Einstein condensation of trapped atomic gases , 2001, cond-mat/0109421.
[14] G. Viano,et al. Reconstructing the Thermal Green Functions¶at Real Times from Those at Imaginary Times , 2001, cond-mat/0109175.
[15] R. Graham,et al. Conserving and gapless model of the weakly interacting Bose gas , 2000, cond-mat/0006475.
[16] C. Clark,et al. Gapless mean-field theory of Bose-Einstein condensates , 2000 .
[17] S. Giorgini. Collisionless dynamics of dilute Bose gases: Role of quantum and thermal fluctuations , 1999, cond-mat/9911377.
[18] S. Morgan. A gapless theory of Bose-Einstein condensation in dilute gases at finite temperature , 1999, cond-mat/9911278.
[19] N. Berloff. Nonlocal Nonlinear Schrödinger Equations as Models of Superfluidity , 1999 .
[20] N. Berloff,et al. Motions in a bose condensate: VI. Vortices in a nonlocal model , 1999 .
[21] H. Kleinert. Systematic Improvement of Hartree–Fock–Bogoliubov Approximation with Exponentially Fast Convergence from Variational Perturbation Theory , 1998 .
[22] E. P. Yukalova,et al. Multichannel approach to clustering matter , 1997, cond-mat/9710346.
[23] E. P. Yukalova,et al. Thermodynamics of strong interactions , 1997, hep-ph/9709338.
[24] Griffin,et al. Conserving and gapless approximations for an inhomogeneous Bose gas at finite temperatures. , 1996, Physical review. B, Condensed matter.
[25] Wolfgang Ketterle,et al. Bose-Einstein Condensation: Identity Crisis for Indistinguishable Particles , 2007 .
[26] V. N. Popov. Functional integrals in quantum field theory and statistical physics , 1983 .
[27] H. Kleinert. Higher Effective Actions for Bose Systems , 1982, 1982.
[28] N. Bogolubov. Introduction to quantum statistical mechanics , 1982 .
[29] G. Grinstein,et al. Phase Transition in the Sigma Model at Finite Temperature , 1977 .
[30] D. A. Kirzhnits,et al. Symmetry Behavior in Gauge Theories , 1976 .
[31] J. Cornwall,et al. Effective Action for Composite Operators , 1974 .
[32] J. Ginibre. On the asymptotic exactness of the Bogoliubov approximation for many boson systems , 1968 .
[33] N. Bogolyubov. Lectures on quantum statistics , 1967 .
[34] P. C. Hohenberg,et al. Microscopic Theory of Superfluid Helium , 1965 .
[35] G. Baym,et al. Self-Consistent Approximations in Many-Body Systems , 1962 .
[36] J. Goldstone,et al. Field theories with « Superconductor » solutions , 1961 .
[37] N. M. Hugenholtz,et al. Ground-State Energy and Excitation Spectrum of a System of Interacting Bosons , 1959 .
[38] R. Arnowitt,et al. THEORY OF MANY-BOSON SYSTEMS: PAIR THEORY , 1959 .
[39] Kerson Huang,et al. Eigenvalues and Eigenfunctions of a Bose System of Hard Spheres and Its Low-Temperature Properties , 1957 .
[40] T. D. Lee,et al. Many-Body Problem in Quantum Mechanics and Quantum Statistical Mechanics , 1957 .