Gapless Hartree-Fock-Bogoliubov approximation for Bose gases

A dilute Bose system with Bose-Einstein condensate is considered. It is shown that the Hartree-Fock-Bogoliubov approximation can be made both conserving as well as gapless. This is achieved by taking into account all physical normalization conditions, that is, the normalization condition for the condensed particles and that for the total number of particles. Two Lagrange multipliers, introduced for preserving these normalization conditions, make the consideration completely self-consistent.

[1]  D. Perepelitsa,et al.  Path integrals in quantum mechanics , 2013 .

[2]  H. Kleinert Path Integrals in Quantum Mechanics, Statistics, Polymer Physics, and Financial Markets , 2006 .

[3]  E. P. Yukalova,et al.  Normal and anomalous averages for systems with Bose-Einstein condensate , 2005, cond-mat/0509103.

[4]  A. Jensen,et al.  Correlated Gaussian method for dilute bosonic systems , 2005 .

[5]  Darmstadt,et al.  Gapless Hartree-Fock resummation scheme for the O(N) model , 2005, hep-ph/0502146.

[6]  T. Kita Conserving gapless mean-field theory for bose-einstein condensates , 2004, cond-mat/0411296.

[7]  J. Zinn-Justin Path integrals in quantum mechanics , 2005 .

[8]  V. Yukalov Number-of-particle fluctuations in systems with Bose-Einstein condensate , 2005, cond-mat/0504473.

[9]  K. Sengstock,et al.  Physics with coherent matter waves , 2004, cond-mat/0403128.

[10]  S. Morgan Response of Bose-Einstein condensates to external perturbations at finite temperature , 2003, cond-mat/0307246.

[11]  J. Andersen Theory of the weakly interacting Bose gas , 2003, cond-mat/0305138.

[12]  C. Pethick,et al.  Bose–Einstein Condensation in Dilute Gases: Contents , 2008 .

[13]  V. S. Bagnato,et al.  Bose-Einstein condensation of trapped atomic gases , 2001, cond-mat/0109421.

[14]  G. Viano,et al.  Reconstructing the Thermal Green Functions¶at Real Times from Those at Imaginary Times , 2001, cond-mat/0109175.

[15]  R. Graham,et al.  Conserving and gapless model of the weakly interacting Bose gas , 2000, cond-mat/0006475.

[16]  C. Clark,et al.  Gapless mean-field theory of Bose-Einstein condensates , 2000 .

[17]  S. Giorgini Collisionless dynamics of dilute Bose gases: Role of quantum and thermal fluctuations , 1999, cond-mat/9911377.

[18]  S. Morgan A gapless theory of Bose-Einstein condensation in dilute gases at finite temperature , 1999, cond-mat/9911278.

[19]  N. Berloff Nonlocal Nonlinear Schrödinger Equations as Models of Superfluidity , 1999 .

[20]  N. Berloff,et al.  Motions in a bose condensate: VI. Vortices in a nonlocal model , 1999 .

[21]  H. Kleinert Systematic Improvement of Hartree–Fock–Bogoliubov Approximation with Exponentially Fast Convergence from Variational Perturbation Theory , 1998 .

[22]  E. P. Yukalova,et al.  Multichannel approach to clustering matter , 1997, cond-mat/9710346.

[23]  E. P. Yukalova,et al.  Thermodynamics of strong interactions , 1997, hep-ph/9709338.

[24]  Griffin,et al.  Conserving and gapless approximations for an inhomogeneous Bose gas at finite temperatures. , 1996, Physical review. B, Condensed matter.

[25]  Wolfgang Ketterle,et al.  Bose-Einstein Condensation: Identity Crisis for Indistinguishable Particles , 2007 .

[26]  V. N. Popov Functional integrals in quantum field theory and statistical physics , 1983 .

[27]  H. Kleinert Higher Effective Actions for Bose Systems , 1982, 1982.

[28]  N. Bogolubov Introduction to quantum statistical mechanics , 1982 .

[29]  G. Grinstein,et al.  Phase Transition in the Sigma Model at Finite Temperature , 1977 .

[30]  D. A. Kirzhnits,et al.  Symmetry Behavior in Gauge Theories , 1976 .

[31]  J. Cornwall,et al.  Effective Action for Composite Operators , 1974 .

[32]  J. Ginibre On the asymptotic exactness of the Bogoliubov approximation for many boson systems , 1968 .

[33]  N. Bogolyubov Lectures on quantum statistics , 1967 .

[34]  P. C. Hohenberg,et al.  Microscopic Theory of Superfluid Helium , 1965 .

[35]  G. Baym,et al.  Self-Consistent Approximations in Many-Body Systems , 1962 .

[36]  J. Goldstone,et al.  Field theories with « Superconductor » solutions , 1961 .

[37]  N. M. Hugenholtz,et al.  Ground-State Energy and Excitation Spectrum of a System of Interacting Bosons , 1959 .

[38]  R. Arnowitt,et al.  THEORY OF MANY-BOSON SYSTEMS: PAIR THEORY , 1959 .

[39]  Kerson Huang,et al.  Eigenvalues and Eigenfunctions of a Bose System of Hard Spheres and Its Low-Temperature Properties , 1957 .

[40]  T. D. Lee,et al.  Many-Body Problem in Quantum Mechanics and Quantum Statistical Mechanics , 1957 .