Formation of hybrid core–shell microgels induced by autonomous unidirectional migration of nanoparticles

This Communication describes a facile strategy for the fabrication of inorganic nanoparticle (NP)-loaded hybrid core–shell microgels. The formation of core–shell microgels constitutes a novel mechanism in which the ionic-crosslinking of charged polymers (e.g., alginate) drives the unidirectional migration of NPs towards the centre of droplets. This versatile strategy allows the encapsulation of inorganic NPs with different sizes, shapes and surface properties in the core of the microgels in a single step.

[1]  Ali Khademhosseini,et al.  Nanocomposite hydrogels for biomedical applications. , 2014, Biotechnology and bioengineering.

[2]  Seung‐Man Yang,et al.  Photothermal control of membrane permeability of microcapsules for on-demand release. , 2014, ACS applied materials & interfaces.

[3]  Yu Gao,et al.  Poly(N-isopropylacrylamide)–Au hybrid microgels: synthesis, characterization, thermally tunable optical and catalytic properties , 2013 .

[4]  K. Wilkinson,et al.  Diffusion of ions in a calcium alginate hydrogel-structure is the primary factor controlling diffusion. , 2013, Carbohydrate polymers.

[5]  Shin‐Hyun Kim,et al.  Microfluidic fabrication of photo-responsive hydrogel capsules. , 2013, Chemical communications.

[6]  J. Popp,et al.  Polyacrylamid/silver composite particles produced via microfluidic photopolymerization for single particle-based SERS microsensorics. , 2013, Analytical chemistry.

[7]  Z. Suo,et al.  Highly stretchable and tough hydrogels , 2012, Nature.

[8]  M. Karg Multifunctional inorganic/organic hybrid microgels , 2012, Colloid and Polymer Science.

[9]  T. Mayer,et al.  The polymer/colloid duality of microgel suspensions. , 2012, Annual review of physical chemistry.

[10]  Xingzhong Zhao,et al.  Generation of alginate gel particles with AuNPs layers by polydimethylsiloxan template. , 2011, Biomicrofluidics.

[11]  Ho Cheung Shum,et al.  Microfluidic generation of multifunctional quantum dot barcode particles. , 2011, Journal of the American Chemical Society.

[12]  K. Wakabayashi,et al.  Anisotropic structure of calcium-induced alginate gels by optical and small-angle X-ray scattering measurements. , 2011, Biomacromolecules.

[13]  A. Valero,et al.  Link between alginate reaction front propagation and general reaction diffusion theory. , 2011, Analytical chemistry.

[14]  P. Mulvaney,et al.  Surface plasmon spectroscopy of gold-poly-N-isopropylacrylamide core-shell particles. , 2011, Langmuir : the ACS journal of surfaces and colloids.

[15]  Probal Banerjee,et al.  Smart Core—Shell Hybrid Nanogels with Ag Nanoparticle Core for Cancer Cell Imaging and Gel Shell for pH-Regulated Drug Delivery , 2010 .

[16]  Weitai Wu,et al.  Hybrid micro-/nanogels for optical sensing and intracellular imaging , 2010, Nano reviews.

[17]  T. Hellweg,et al.  New “smart” poly(NIPAM) microgels and nanoparticle microgel hybrids: Properties and advances in characterisation , 2009 .

[18]  T. Hellweg,et al.  Smart inorganic/organic hybrid microgels: Synthesis and characterisation , 2009 .

[19]  Ethan Tumarkin,et al.  Microfluidic generation of microgels from synthetic and natural polymers. , 2009, Chemical Society reviews.

[20]  Yan Lu,et al.  Thermosensitive core-shell microgel as a “nanoreactor” for catalytic active metal nanoparticles , 2009 .

[21]  Yu-Cheng Lin,et al.  Using a T-junction microfluidic chip for monodisperse calcium alginate microparticles and encapsulation of nanoparticles , 2009 .

[22]  A. Ajdari,et al.  Boosting migration of large particles by solute contrasts. , 2008, Nature materials.

[23]  O. Velev,et al.  Microwave, photo- and thermally responsive PNIPAm-gold nanoparticle microgels. , 2008, Langmuir.

[24]  E. Kumacheva,et al.  Sequestering Gold Nanorods by Polymer Microgels , 2008 .

[25]  Matthias Karg,et al.  Encapsulation and Growth of Gold Nanoparticles in Thermoresponsive Microgels , 2008 .

[26]  R. Hayward,et al.  Hierarchically structured microparticles formed by interfacial instabilities of emulsion droplets containing amphiphilic block copolymers. , 2008, Angewandte Chemie.

[27]  Pawel Sikorski,et al.  Evidence for egg-box-compatible interactions in calcium-alginate gels from fiber X-ray diffraction. , 2007, Biomacromolecules.

[28]  Zhibing Hu,et al.  Fabrication of monodisperse gel shells and functional microgels in microfluidic devices. , 2007, Angewandte Chemie.

[29]  Gilbert C. Walker,et al.  Exploring Microfluidic Routes to Microgels of Biological Polymers , 2007 .

[30]  Yapeng Fang,et al.  Reexamining the egg-box model in calcium-alginate gels with X-ray diffraction. , 2007, Biomacromolecules.

[31]  Ethan Tumarkin,et al.  Microfluidic production of biopolymer microcapsules with controlled morphology. , 2006, Journal of the American Chemical Society.

[32]  H. Kawaguchi,et al.  Stimuli-sensitive core/shell template particles for immobilizing inorganic nanoparticles in the core , 2006 .

[33]  E. Kumacheva,et al.  MICROGELS: Old Materials with New Applications , 2006 .

[34]  H. Kawaguchi,et al.  Hybrid microgels with reversibly changeable multiple brilliant color. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[35]  Sung Min Kang,et al.  Formation of Thermoresponsive Gold Nanoparticle/PNIPAAm Hybrids by Surface‐Initiated, Atom Transfer Radical Polymerization in Aqueous Media , 2005 .

[36]  E. Kumacheva,et al.  Polymer microgels: reactors for semiconductor, metal, and magnetic nanoparticles. , 2004, Journal of the American Chemical Society.

[37]  Sunil Kumar Bajpai,et al.  Investigation of swelling/degradation behaviour of alginate beads crosslinked with Ca2+ and Ba2+ ions , 2004 .

[38]  David Thom,et al.  Chiroptical and stoichiometric evidence of a specific, primary dimerisation process in alginate gelation , 1978 .

[39]  E. Morris,et al.  Biological interactions between polysaccharides and divalent cations: The egg‐box model , 1973 .

[40]  L. Liz‐Marzán,et al.  Multifunctionality in metal@microgel colloidal nanocomposites , 2013 .

[41]  Luis M Liz-Marzán,et al.  Au@pNIPAM colloids as molecular traps for surface-enhanced, spectroscopic, ultra-sensitive analysis. , 2009, Angewandte Chemie.