Melt sources for alkaline carbonate-bearing rocks of the Terskiy Coast (Kola Alkaline Carbonatitic Province)

[1]  A. Giuliani,et al.  Compositional variations in primitive kimberlite melts and entrained mantle cargo from a global survey of trace element compositions in kimberlite olivine , 2022, Journal of Petrology.

[2]  S. Klemme,et al.  Recycling process and proto-kimberlite melt metasomatism in the lithosphere-asthenosphere boundary beneath the Amazonian Craton recorded by garnet xenocrysts and mantle xenoliths from the Carolina kimberlite , 2022, Geoscience Frontiers.

[3]  M. Kopylova,et al.  Petrology of lamprophyre dykes in the Kola Alkaline Carbonatite Province (N Europe) , 2021 .

[4]  A. Nosova,et al.  Ultramafic Alkaline Rocks of Kepino Cluster, Arkhangelsk, Russia: Different Evolution of Kimberlite Melts in Sills and Pipes , 2021, Minerals.

[5]  L. Warr IMA–CNMNC approved mineral symbols , 2021, Mineralogical Magazine.

[6]  M. Kopylova,et al.  Origin of megacrysts by carbonate-bearing metasomatism: a case study for the Muskox kimberlite, Slave craton, Canada , 2021, Journal of the Geological Society.

[7]  A. Nosova,et al.  Sr–Nd–O isotopic evidence of variable sources of mantle metasomatism in the subcratonic lithospheric mantle beneath the Grib kimberlite, northwestern Russia , 2020 .

[8]  T. Bayanova,et al.  The Kandalaksha-Kolvitsa gabbro-anorthosite complex: Nd-Sr isotope-geochronological evidence of its affinity to the East-Scandinavian Large Igneous Province , 2020, IOP Conference Series: Earth and Environmental Science.

[9]  Do Hee Keum,et al.  Kimberlite genesis from a common carbonate-rich primary melt modified by lithospheric mantle assimilation , 2020, Science Advances.

[10]  A. Chakhmouradian,et al.  Polymineralic inclusions in oxide minerals of the Afrikanda alkaline-ultramafic complex: Implications for the evolution of perovskite mineralisation , 2020, Contributions to Mineralogy and Petrology.

[11]  S. Speziale,et al.  Carbonatites from the southern Brazilian Platform: A review. II: Isotopic evidences , 2020 .

[12]  D. Pearson,et al.  Kimberlites as Geochemical Probes of Earth’s Mantle , 2019 .

[13]  A. Giuliani,et al.  Petrogenesis of a Hybrid Cluster of Evolved Kimberlites and Ultramafic Lamprophyres in the Kuusamo Area, Finland , 2019, Journal of Petrology.

[14]  A. Boyce,et al.  Sulphur isotopes of alkaline magmas unlock long-term records of crustal recycling on Earth , 2019, Nature Communications.

[15]  A. Nosova,et al.  Phlogopite in mantle xenoliths and kimberlite from the Grib pipe, Arkhangelsk province, Russia: Evidence for multi-stage mantle metasomatism and origin of phlogopite in kimberlite , 2019, Geoscience Frontiers.

[16]  A. Giuliani,et al.  New geochemical constraints on the origins of MARID and PIC rocks: Implications for mantle metasomatism and mantle-derived potassic magmatism , 2018, Lithos.

[17]  I. V. Serov,et al.  Geochemistry and origin of the Mirny field kimberlites, Siberia , 2018, Mineralogy and Petrology.

[18]  S. Tappe,et al.  Geodynamics of kimberlites on a cooling Earth: Clues to plate tectonic evolution and deep volatile cycles , 2018 .

[19]  F. Wall,et al.  Fenites associated with carbonatite complexes: A review , 2018 .

[20]  A. Abersteiner,et al.  Cr-rich clinopyroxene megacrysts from the Grib kimberlite, Arkhangelsk province, Russia: Relation to clinopyroxene–phlogopite xenoliths and evidence for mantle metasomatism by kimberlite melts , 2017 .

[21]  J. Afonso,et al.  Southwestern Africa on the burner: Pleistocene carbonatite volcanism linked to deep mantle upwelling in Angola , 2017 .

[22]  S. Sergeev,et al.  Geochronology of Metamorphic Events in the Lower Crust beneath NW Russia: a Xenolith Hf Isotope Study , 2017 .

[23]  A. Steenfelt,et al.  Sources and mobility of carbonate melts beneath cratons, with implications for deep carbon cycling, metasomatism and rift initiation , 2017 .

[24]  H. Strauss,et al.  Plates or plumes in the origin of kimberlites: U/Pb perovskite and Sr-Nd-Hf-Os-C-O isotope constraints from the Superior craton (Canada) , 2017 .

[25]  L. Kogarko,et al.  Lead isotopic evidence for interaction between plume and lower crust during emplacement of peralkaline Lovozero rocks and related rare-metal deposits, East Fennoscandia, Kola Peninsula, Russia , 2017, Contributions to Mineralogy and Petrology.

[26]  B. Belyatsky,et al.  Paleozoic tholeiitic magmatism of the Kola province: Spatial distribution, age, and relation to alkaline magmatism , 2017, Petrology.

[27]  A. Rosenthal,et al.  Redox preconditioning deep cratonic lithosphere for kimberlite genesis – evidence from the central Slave Craton , 2017, Scientific Reports.

[28]  A. Nosova,et al.  Kimberlite age in the Arkhangelsk Province, Russia: Isotopic geochronologic Rb–Sr and 40Ar/39Ar and mineralogical data on phlogopite , 2016, Petrology.

[29]  N. Pokhilenko,et al.  Metasomatic processes in the lithospheric mantle beneath the V. Grib kimberlite pipe (Arkhangelsk diamondiferous province, Russia) , 2015 .

[30]  A. Nosova,et al.  Olivine from the Pionerskaya and V. Grib kimberlite pipes, Arkhangelsk diamond province, Russia: Types, composition, and origin , 2015, Petrology.

[31]  A. Zaitsev,et al.  Elemental, lead and sulfur isotopic compositions of galena from Kola carbonatites, Russia – implications for melt and mantle evolution , 2015, Mineralogical Magazine.

[32]  Y. Amelin,et al.  Carbonatites , isotopes and evolution of the subcontinental mantle : An overview , 2015 .

[33]  A. Kargin Geochemistry of mantle metasomatism related to formation of kimberlites in the northern East European Platform , 2014, Geology of Ore Deposits.

[34]  I. Fletcher,et al.  Origin of carbonatites in the South Qinling orogen: Implications for crustal recycling and timing of collision between the South and North China Blocks , 2014 .

[35]  Fu-Yuan Wu,et al.  U-Pb geochronology and Sr-Nd isotopic systematics of minerals from the ultrabasic-alkaline massifs of the Kola province , 2014, Petrology.

[36]  A. Giuliani,et al.  Petrogenesis of Mantle Polymict Breccias: Insights into Mantle Processes Coeval with Kimberlite Magmatism , 2014 .

[37]  R. Carniel,et al.  AFC3D: A 3D graphical tool to model assimilation and fractional crystallization with and without recharge in the R environment , 2014 .

[38]  Yue-heng Yang,et al.  Emplacement age and Sr–Nd isotopic compositions of the Afrikanda alkaline ultramafic complex, Kola Peninsula, Russia , 2013 .

[39]  A. Giuliani,et al.  Oxide, sulphide and carbonate minerals in a mantle polymict breccia: Metasomatism by proto-kimberlite magmas, and relationship to the kimberlite megacrystic suite , 2013 .

[40]  L. I. Demina,et al.  Paleomagnetism, geochronology, and magnetic mineralogy of Devonian dikes from the Kola alkaline province (NE Fennoscandian Shield) , 2013, Izvestiya, Physics of the Solid Earth.

[41]  A. Steenfelt,et al.  Asthenospheric source of Neoproterozoic and Mesozoic kimberlites from the North Atlantic craton, West Greenland: New high-precision U–Pb and Sr–Nd isotope data on perovskite , 2012 .

[42]  V. Kononova,et al.  Kimberlites of the Daldyn-Alakit region (Yakutia): Spatial distribution of the rocks with different chemical characteristics , 2011 .

[43]  B. Kjarsgaard,et al.  From source to crust: Tracing magmatic evolution in a kimberlite and a melilitite using microsample geochemistry , 2010 .

[44]  Keith Bell,et al.  Geochronology of carbonatites from the Canadian and Baltic Shields, and the Canadian Cordillera: clues to mantle evolution , 2010 .

[45]  Y. Lahaye,et al.  Plume-related mantle source of super-large rare metal deposits from the Lovozero and Khibina massifs on the Kola Peninsula, Eastern part of Baltic Shield: Sr, Nd and Hf isotope systematics , 2010 .

[46]  K. Bell,et al.  Source of parental melts to carbonatites–critical isotopic constraints , 2010 .

[47]  O. Bogatikov,et al.  Polygenetic sources of kimberlites, magma composition, and diamond potential exemplified by the East European and Siberian cratons , 2009 .

[48]  A. Steenfelt,et al.  The newly discovered Jurassic Tikiusaaq carbonatite-aillikite occurrence, West Greenland, and some remarks on carbonatite-kimberlite relationships , 2009 .

[49]  E. Sharkov,et al.  Within-plate (intracontinental) and postorogenic magmatism of the East European Craton as reflection of the evolution of continental lithosphere , 2009 .

[50]  S. Foley Rejuvenation and erosion of the cratonic lithosphere , 2008 .

[51]  B. Kjarsgaard,et al.  Between carbonatite and lamproite—Diamondiferous Torngat ultramafic lamprophyres formed by carbonate-fluxed melting of cratonic MARID-type metasomes , 2008 .

[52]  R. Romer,et al.  Mediterranean Tertiary lamproites derived from multiple source components in postcollisional geodynamics , 2008 .

[53]  O. Bogatikov,et al.  Diamond resource potential of kimberlites from the Zimny Bereg field, Arkhangel’sk oblast , 2007 .

[54]  I. V. Serov,et al.  Isotope-geochemical systematics of kimberlites and related rocks from the Siberian Platform , 2007 .

[55]  H. Mirnejad,et al.  Origin and Source Evolution of the Leucite Hills Lamproites: Evidence from Sr-Nd-Pb-O Isotopic Compositions , 2006 .

[56]  Yeadong Kim,et al.  Sr Nd Pb isotopic compositions of the Kovdor phoscorite carbonatite complex, Kola Peninsula, NW Russia , 2006 .

[57]  B. Kieffer,et al.  High‐precision isotopic characterization of USGS reference materials by TIMS and MC‐ICP‐MS , 2006 .

[58]  B. Kjarsgaard,et al.  Genesis of Ultramafic Lamprophyres and Carbonatites at Aillik Bay, Labrador: a Consequence of Incipient Lithospheric Thinning beneath the North Atlantic Craton , 2006 .

[59]  M. Whitehouse,et al.  The Lapland-Kola orogen: Palaeoproterozoic collision and accretion of the northern Fennoscandian lithosphere , 2006, Geological Society, London, Memoirs.

[60]  D. Demaiffe,et al.  Petrogenetic processes in the ultramafic, alkaline and carbonatitic magmatism in the Kola Alkaline Province: A review , 2005 .

[61]  H. Kitagawa,et al.  Assimilation and fractional crystallization controlled by transport process of crustal melt : implications from an alkali basalt-dacite suite from Rishiri Volcano, Japan , 2005 .

[62]  R. Stern,et al.  Geochemical mapping of the Mariana arc‐basin system: Implications for the nature and distribution of subduction components , 2005 .

[63]  S. Sindern,et al.  Mineralogy and geochemistry of silicate dyke rocks associated with carbonatites from the Khibina complex (Kola, Russia) – isotope constraints on genesis and small-scale mantle sources , 2004 .

[64]  Irina M. Artemieva,et al.  Lithospheric structure, composition, and thermal regime of the East European Craton: implications for the subsidence of the Russian platform , 2003 .

[65]  B. Marty,et al.  Rare gas isotopes and parent trace elements in ultrabasic-alkaline-carbonatite complexes, Kola Peninsula: Identification of lower mantle plume component , 2002 .

[66]  M. Thirlwall,et al.  The lower crust beneath cratonic north‐east Europe: isotopic constraints from garnet granulite xenoliths , 2001 .

[67]  G. Tilton,et al.  Nd, Pb and Sr Isotopic Compositions of East African Carbonatites: Evidence for Mantle Mixing and Plume Inhomogeneity , 2001 .

[68]  E. Sharkov,et al.  Garnet Granulite Xenoliths from the Northern Baltic Shield—the Underplated Lower Crust of a Palaeoproterozoic Large Igneous Province? , 2001 .

[69]  K. Bell,et al.  The Turiy Massif, Kola Peninsula, Russia: Isotopic and Geochemical Evidence for Multi-source Evolution , 2001 .

[70]  F. Bea,et al.  Anomalous alkaline rocks of Soustov, Kola: evidence of mantle-derived metasomatic fluids affecting crustal materials , 2001 .

[71]  N. Berezhnaya,et al.  Age, evolution and regional setting of the Palaeoproterozoic Umba igneous suite in the Kolvitsa-Umba zone, Kola Peninsula: constraints from new geological, geochemical and U-Pb zircon data , 2001 .

[72]  Kazuya Takahashi,et al.  JNdi-1: a neodymium isotopic reference in consistency with LaJolla neodymium , 2000 .

[73]  E. Hegner,et al.  Geochemistry and mineralogy of kimberlites from the Arkhangelsk Region, NW Russia: evidence for transitional kimberlite magma types , 2000 .

[74]  S. Gibson,et al.  Late Devonian Diamondiferous Kimberlite and Alkaline Picrite (Proto-kimberlite?) Magmatism in the Arkhangelsk Region, NW Russia , 2000 .

[75]  B. Marty,et al.  Plume-derived rare gases in 380 Ma carbonatites from the Kola region (Russia) and the argon isotopic composition in the deep mantle , 1998 .

[76]  A. P. Roex,et al.  Isotope and Trace Element Geochemistry of Cretaceous Damaraland Lamprophyres and Carbonatites, Northwestern Namibia: Evidence for Plume—Lithosphere Interactions , 1998 .

[77]  E. Hegner,et al.  Mineralogy and geochemistry of Devonian ultramafic minor intrusions of the southern Kola Peninsula, Russia: implications for the petrogenesis of kimberlites and melilitites , 1998 .

[78]  U. Kramm,et al.  Neodymium and Sr isotopic constraints on the petrogenetic relationships between carbonatites and cancrinite syenites from the Lueshe Alkaline Complex, east Zaire , 1997 .

[79]  C. Pin,et al.  Sequential separation of light rare-earth elements, thorium and uranium by miniaturized extraction chromatography: Application to isotopic analyses of silicate rocks , 1997 .

[80]  H. Maluski,et al.  Petrogenesis of Devonian lamprophyre and carbonatite minor intrusions, Kandalaksha Gulf (Kola Peninsula, Russia) , 1996 .

[81]  K. Bell,et al.  Alkaline rocks of the Turiy Peninsula, Russia, including type-locality turjaite and turjite; a review , 1996 .

[82]  D. Ionov,et al.  Petrology and geochemistry of xenoliths from the Northern Baltic shield: evidence for partial melting and metasomatism in the lower crust beneath an Archaean terrane , 1995 .

[83]  U. Kramm,et al.  Nd and Sr isotope signatures of the Khibina and Lovozero agpaitic centres, Kola Alkaline province, Russia , 1994 .

[84]  U. Kramm Mantle components of carbonatites from the Kola alkaline province, Russia and Finland; a Nd-Sr study , 1993 .

[85]  Kenneth R. Ludwig,et al.  Crustal subsidence rate off Hawaii determined from 234U/238U ages of drowned coral reefs , 1991 .

[86]  I. Azbel,et al.  Crustal structure of the Kola Peninsula from inversion of deep seismic sounding data , 1989 .

[87]  W. McDonough,et al.  Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes , 1989, Geological Society, London, Special Publications.

[88]  S. Hart,et al.  Heterogeneous mantle domains: signatures, genesis and mixing chronologies , 1988 .

[89]  O. Lev,et al.  Mantle metasomatism by ephemeral carbonatite melts , 1988, Nature.

[90]  J. Blenkinsop,et al.  Nd and Sr isotopic compositions of East African carbonatites: Implications for mantle heterogeneity , 1987 .

[91]  G. Manhès,et al.  UThPb systematics of the eucrite "Juvinas": Precise age determination and evidence for exotic lead , 1984 .

[92]  G. Wasserburg,et al.  Sm-Nd isotopic evolution of chondrites and achondrites. II , 1984 .

[93]  S. Goldstein,et al.  Nd, Sr and Pb isotopic systematics in a three-component mantle: a new perspective , 1982, Nature.

[94]  B. Doe,et al.  Plumbotectonics-the model , 1981 .

[95]  R. Steiger,et al.  Subcommission on geochronology: Convention on the use of decay constants in geo- and cosmochronology , 1977 .

[96]  G. Wasserburg,et al.  Nd isotopic variations and petrogenetic models , 1976 .

[97]  J. Kramers,et al.  Approximation of terrestrial lead isotope evolution by a two-stage model , 1975 .