Effective stability for a Hamiltonian system near an elliptic equilibrium point, with an application to the restricted three body problem

[1]  Antonio Giorgilli,et al.  Exponential law for the equipartition times among translational and vibrational degrees of freedom , 1987 .

[2]  Giovanni Gallavotti,et al.  Stability of motions near resonances in quasi-integrable Hamiltonian systems , 1986 .

[3]  L. Galgani,et al.  Rigorous estimates for the series expansions of Hamiltonian perturbation theory , 1985 .

[4]  G. Benettin,et al.  A proof of Nekhoroshev's theorem for the stability times in nearly integrable Hamiltonian systems , 1985 .

[5]  G. Benettin,et al.  Boltzmann's ultraviolet cutoff and Nekhoroshev's theorem on Arnold diffusion , 1984, Nature.

[6]  G. Benettin,et al.  A proof of Kolmogorov’s theorem on invariant tori using canonical transformations defined by the Lie method , 1984 .

[7]  J. Pöschel Integrability of hamiltonian systems on cantor sets , 1982 .

[8]  L. Galgani,et al.  Formal integrals for an autonomous Hamiltonian system near an equilibrium point , 1978 .

[9]  N N Nekhoroshev,et al.  AN EXPONENTIAL ESTIMATE OF THE TIME OF STABILITY OF NEARLY-INTEGRABLE HAMILTONIAN SYSTEMS , 1977 .

[10]  André Deprit,et al.  Canonical transformations depending on a small parameter , 1969 .

[11]  A. Deprit,et al.  STABILITY OF THE TRIANGULAR LAGRANGIAN POINTS , 1967 .

[12]  F. G. Gustavson,et al.  Oil constructing formal integrals of a Hamiltonian system near ail equilibrium point , 1966 .

[13]  V. I. Arnol'd,et al.  PROOF OF A THEOREM OF A.?N.?KOLMOGOROV ON THE INVARIANCE OF QUASI-PERIODIC MOTIONS UNDER SMALL PERTURBATIONS OF THE HAMILTONIAN , 1963 .

[14]  H. Rüssmann Stability of Hamiltonian Systems of Two Degrees of Freedom and of Formally Conservative Mappings Near a Singular Point , 1985 .

[15]  J. Henrard The Algorithm of the Inverse for Lie Transform , 1973 .

[16]  Vladimir Igorevich Arnolʹd,et al.  Problèmes ergodiques de la mécanique classique , 1967 .

[17]  Victor Szebehely,et al.  Theory of Orbits. , 1967 .

[18]  W. Gröbner,et al.  Die Lie-Reihen und ihre Anwendungen , 1960 .

[19]  A. Kolmogorov On conservation of conditionally periodic motions for a small change in Hamilton's function , 1954 .