Practical marginalized multilevel models
暂无分享,去创建一个
Brian S Caffo | Michael E Griswold | Scott L Zeger | Bruce J Swihart | B. Caffo | S. Zeger | B. Swihart | Michael E. Griswold
[1] P. Albert,et al. Models for longitudinal data: a generalized estimating equation approach. , 1988, Biometrics.
[2] Brian Caffo,et al. A User-Friendly Introduction to Link-Probit-Normal Models , 2006 .
[3] Jeffrey D Blume,et al. Likelihood methods for measuring statistical evidence , 2002, Statistics in medicine.
[4] N. Jewell,et al. To GEE or Not to GEE: Comparing Population Average and Mixed Models for Estimating the Associations Between Neighborhood Risk Factors and Health , 2010, Epidemiology.
[5] M. Kenward,et al. Design and Analysis of Cross-Over Trials , 1989 .
[6] E. Demidenko,et al. Mixed Models: Theory and Applications (Wiley Series in Probability and Statistics) , 2004 .
[7] D. Bates,et al. Nonlinear mixed effects models for repeated measures data. , 1990, Biometrics.
[8] Michael G. Kenward,et al. Design and Analysis of Cross-Over Trials, Second Edition , 2003 .
[9] Brian S. Caffo,et al. Unequal sampling for Monte Carlo EM algorithms , 2002 .
[10] Scott L. Zeger,et al. Marginalized Multilevel Models and Likelihood Inference , 2000 .
[11] N. Breslow,et al. Bias Correction in Generalized Linear Mixed Models with Multiple Components of Dispersion , 1996 .
[12] C. McCulloch. Maximum Likelihood Algorithms for Generalized Linear Mixed Models , 1997 .
[13] T. Louis,et al. Marginalized Binary Mixed‐Effects Models with Covariate‐Dependent Random Effects and Likelihood Inference , 2004, Biometrics.
[14] Lewis B. Sheiner,et al. Heteroscedastic nonlinear regression , 1988 .
[15] L. Corrado. Generalized Latent Variable Modeling: Multilevel, Longitudinal, and Structural Equation Models , 2005 .
[16] Wolfgang Jank,et al. A survey of Monte Carlo algorithms for maximizing the likelihood of a two-stage hierarchical model , 2001 .
[17] M Davidian,et al. Some general estimation methods for nonlinear mixed-effects models. , 1993, Journal of biopharmaceutical statistics.
[18] Brian S. Caffo,et al. A user-friendly tutorial on link-probit-normal models , 2006 .
[19] Sanjoy K. Sinha,et al. Robust Analysis of Generalized Linear Mixed Models , 2004 .
[20] H. Goldstein. Multilevel Statistical Models , 2006 .
[21] E. Page,et al. Approximations to the Cumulative Normal Function and its Inverse for Use on a Pocket Calculator , 1977 .
[22] Joanne Katz,et al. Socioeconomic Status and Visual Impairment Among Urban Americans , 1991 .
[23] D. Bates,et al. Approximations to the Log-Likelihood Function in the Nonlinear Mixed-Effects Model , 1995 .
[24] Russell D. Wolfinger,et al. Fitting Nonlinear Mixed Models with the New NLMIXED Procedure , 1999 .
[25] T. Amemiya. QUALITATIVE RESPONSE MODELS: A SURVEY , 1981 .
[26] S. Zeger,et al. Longitudinal data analysis using generalized linear models , 1986 .
[27] James K. Lindsey,et al. Nonlinear models in medical statistics , 2001 .
[28] J. Ware,et al. Random-effects models for serial observations with binary response. , 1984, Biometrics.
[29] John M. Olin. On MCMC sampling in hierarchical longitudinal models , 1999 .
[30] Sl Zeger,et al. Marginalized multilevel models and likelihood inference - Comments & Rejoinder , 2000 .
[31] J. Kalbfleisch,et al. A Comparison of Cluster-Specific and Population-Averaged Approaches for Analyzing Correlated Binary Data , 1991 .
[32] Thomas A. Louis,et al. Matching conditional and marginal shapes in binary random intercept models using a bridge distribution function , 2003 .
[33] R. Royall. Statistical Evidence: A Likelihood Paradigm , 1997 .
[34] R. Wolfinger,et al. Generalized linear mixed models a pseudo-likelihood approach , 1993 .
[35] J. Robins,et al. Adjusting for Nonignorable Drop-Out Using Semiparametric Nonresponse Models , 1999 .
[36] John D. Kalbfleisch,et al. Application of Likelihood Methods to Models Involving Large Numbers of Parameters , 1970 .
[37] T. Liao. Interpreting Probability Models: Logit, Probit, and Other Generalized Linear Models , 1994 .
[38] P. Diggle,et al. Analysis of Longitudinal Data. , 1997 .
[39] M. Karim. Generalized Linear Models With Random Effects , 1991 .
[40] Brian Caffo,et al. Flexible random intercept models for binary outcomes using mixtures of normals , 2007, Comput. Stat. Data Anal..
[41] S. R. Searle,et al. Generalized, Linear, and Mixed Models , 2005 .
[42] N. Breslow,et al. Approximate inference in generalized linear mixed models , 1993 .
[43] P. Heagerty. Marginally Specified Logistic‐Normal Models for Longitudinal Binary Data , 1999, Biometrics.