KISS1 metastasis suppressor in tumor dormancy: a potential therapeutic target for metastatic cancers?

[1]  F. Taghizadeh-Hesary,et al.  The Metastatic Spread of Breast Cancer Accelerates during Sleep: How the Study Design can Affect the Results , 2023, Asian Pacific journal of cancer prevention : APJCP.

[2]  Kyung-Chul Choi,et al.  The role of KiSS1 gene on the growth and migration of prostate cancer and the underlying molecular mechanisms. , 2022, Life sciences.

[3]  F. Castro-Giner,et al.  The metastatic spread of breast cancer accelerates during sleep , 2022, Nature.

[4]  Sendurai A Mani,et al.  Role of p38 MAP kinase in cancer stem cells and metastasis , 2022, Oncogene.

[5]  G. Raugei,et al.  Metabolic Features of Tumor Dormancy: Possible Therapeutic Strategies , 2022, Cancers.

[6]  M. Bissell,et al.  The Role of Tumor Microenvironment and Exosomes in Dormancy and Relapse. , 2021, Seminars in cancer biology.

[7]  É. Vivier,et al.  Natural killer cells lull tumours into dormancy , 2021, Nature.

[8]  Cyrus M. Ghajar,et al.  Thorny ground, rocky soil: tissue-specific mechanisms of tumor dormancy and relapse. , 2021, Seminars in cancer biology.

[9]  J. Massagué,et al.  Metastasis-Initiating Cells and Ecosystems. , 2021, Cancer discovery.

[10]  H. Peinado,et al.  Could Extracellular Vesicles Contribute to Generation or Awakening of “Sleepy” Metastatic Niches? , 2021, Frontiers in Cell and Developmental Biology.

[11]  B. Czerniecki,et al.  Disseminated cancer cells in breast cancer: mechanism of dissemination and dormancy and emerging insights on therapeutic opportunities. , 2021, Seminars in cancer biology.

[12]  Yi Shi,et al.  The Role of the CXCL12/CXCR4/CXCR7 Chemokine Axis in Cancer , 2020, Frontiers in Pharmacology.

[13]  Cyrus M. Ghajar,et al.  When a House Is Not a Home: A Survey of Antimetastatic Niches and Potential Mechanisms of Disseminated Tumor Cell Suppression. , 2020, Annual review of pathology.

[14]  Liping Wang,et al.  Roles of IFN-γ in tumor progression and regression: a review , 2020, Biomarker research.

[15]  L. Leanza,et al.  Mitochondrial Metabolism, Contact Sites and Cellular Calcium Signaling: Implications for Tumorigenesis , 2020, Cancers.

[16]  I. Witz,et al.  Site‐specific metastasis: A cooperation between cancer cells and the metastatic microenvironment , 2020, International journal of cancer.

[17]  T. Phan,et al.  The dormant cancer cell life cycle , 2020, Nature Reviews Cancer.

[18]  Luis Enrique Cortés-Hernández,et al.  The Role of Circulating Tumor Cells in the Metastatic Cascade: Biology, Technical Challenges, and Clinical Relevance , 2020, Cancers.

[19]  D. Gewirtz,et al.  Therapy-Induced Senescence: An “Old” Friend Becomes the Enemy , 2020, Cancers.

[20]  D. Welch,et al.  KISS1 in metastatic cancer research and treatment: potential and paradoxes , 2020, Cancer and Metastasis Reviews.

[21]  D. Welch,et al.  Role of the tumor microenvironment in regulating the anti-metastatic effect of KISS1 , 2020, Clinical & Experimental Metastasis.

[22]  D. Welch,et al.  Role of the tumor microenvironment in regulating the anti-metastatic effect of KISS1 , 2020, Clinical & Experimental Metastasis.

[23]  Rachelle W Johnson,et al.  Tumor dormancy in bone , 2020, Cancer reports.

[24]  Filipa Carreira-Barbosa,et al.  Wnt Signaling: Paths for Cancer Progression. , 2020, Advances in experimental medicine and biology.

[25]  D. Richardson,et al.  Pharmacological targeting and the diverse functions of the metastasis suppressor, NDRG1, in cancer. , 2020, Free radical biology & medicine.

[26]  A. Alam,et al.  Wnt Signaling and Its Significance Within the Tumor Microenvironment: Novel Therapeutic Insights , 2019, Front. Immunol..

[27]  P. Papageorgis,et al.  Mechanisms of Metastatic Tumor Dormancy and Implications for Cancer Therapy , 2019, International journal of molecular sciences.

[28]  K. Vanderkerken,et al.  AXL Receptor Tyrosine Kinase as a Therapeutic Target in Hematological Malignancies: Focus on Multiple Myeloma , 2019, Cancers.

[29]  Elena Butturini,et al.  Tumor Dormancy and Interplay with Hypoxic Tumor Microenvironment , 2019, International journal of molecular sciences.

[30]  Xin-hua Liang,et al.  Targeting Immune-Mediated Dormancy: A Promising Treatment of Cancer , 2019, Front. Oncol..

[31]  D. Welch,et al.  Defining the Hallmarks of Metastasis. , 2019, Cancer research.

[32]  H. Young,et al.  IFN-γ: A cytokine at the right time, is in the right place. , 2019, Seminars in immunology.

[33]  W. Zong,et al.  The Pleiotropic Effects of Glutamine Metabolism in Cancer , 2019, Cancers.

[34]  C. Brakebusch,et al.  Cancer-associated fibroblasts: how do they contribute to metastasis? , 2019, Clinical & Experimental Metastasis.

[35]  V. Estrella,et al.  Acidosis and cancer: from mechanism to neutralization , 2019, Cancer and Metastasis Reviews.

[36]  Raymond E. A. Sanchez,et al.  Kisspeptin Neurons in the Arcuate Nucleus of the Hypothalamus Orchestrate Circadian Rhythms and Metabolism , 2019, Current Biology.

[37]  A. Recasens,et al.  Targeting Cancer Cell Dormancy. , 2019, Trends in pharmacological sciences.

[38]  C. Klein,et al.  Therapy resistance beyond cellular dormancy , 2019, Nature Cell Biology.

[39]  M. Akhtar,et al.  Paget’s “Seed and Soil” Theory of Cancer Metastasis: An Idea Whose Time has Come , 2019, Advances in anatomic pathology.

[40]  M. Manjili,et al.  Tumor Cell Dormancy: Threat or Opportunity in the Fight against Cancer , 2018, Cancers.

[41]  J. Kirk,et al.  Tumor Dormancy and Slow-Cycling Cancer Cells. , 2019, Advances in experimental medicine and biology.

[42]  P. ten Dijke,et al.  TGF-β Family Signaling Pathways in Cellular Dormancy. , 2019, Trends in cancer.

[43]  C. Sotiriou,et al.  Type I interferon/IRF7 axis instigates chemotherapy-induced immunological dormancy in breast cancer , 2018, Oncogene.

[44]  Carmit Levy,et al.  Bone marrow–derived fibroblasts are a functionally distinct stromal cell population in breast cancer , 2018, The Journal of experimental medicine.

[45]  I. Bozic,et al.  Dormant tumour cells, their niches and the influence of immunity , 2018, Nature Cell Biology.

[46]  Michael S. Goldberg,et al.  Neutrophil extracellular traps produced during inflammation awaken dormant cancer cells in mice , 2018, Science.

[47]  K. Crandall,et al.  Kisspeptin/GPR54 System: What Do We Know About Its Role in Human Reproduction? , 2018, Cellular Physiology and Biochemistry.

[48]  J. Sleeman,et al.  The role of hypoxic signalling in metastasis: towards translating knowledge of basic biology into novel anti-tumour strategies , 2018, Clinical & Experimental Metastasis.

[49]  Kwang-Hyun Cho,et al.  A positive feedback loop bi-stably activates fibroblasts , 2018, Nature Communications.

[50]  J. Chen,et al.  Expression of Transcription Factor 21 (TCF21) and Upregulation Its Level Inhibits Invasion and Metastasis in Esophageal Squamous Cell Carcinoma , 2018, Medical science monitor : international medical journal of experimental and clinical research.

[51]  R. Mirzayans,et al.  Roles of Polyploid/Multinucleated Giant Cancer Cells in Metastasis and Disease Relapse Following Anticancer Treatment , 2018, Cancers.

[52]  F. Ciardiello,et al.  Kisspeptin and Cancer: Molecular Interaction, Biological Functions, and Future Perspectives , 2018, Front. Endocrinol..

[53]  D. Welch,et al.  Automated quantitative image analysis for ex vivo metastasis assays reveals differing lung composition requirements for metastasis suppression by KISS1 , 2018, Clinical & Experimental Metastasis.

[54]  J. Aguirre-Ghiso,et al.  Emerging Topics on Disseminated Cancer Cell Dormancy and the Paradigm of Metastasis , 2018 .

[55]  P. Papageorgis,et al.  Molecular Mechanisms and Emerging Therapeutic Targets of Triple-Negative Breast Cancer Metastasis , 2018, Front. Oncol..

[56]  P. Steeg,et al.  Metastasis suppressors: functional pathways , 2018, Laboratory Investigation.

[57]  G. Kouraklis,et al.  KISS1 and KISS1R expression in gastric cancer. , 2018, Journal of B.U.ON. : official journal of the Balkan Union of Oncology.

[58]  Yun Wang,et al.  KiSS1 gene as a novel mediator of TGFβ-mediated cell invasion in triple negative breast cancer. , 2018, Cellular signalling.

[59]  F. Kühnel,et al.  CD4 and CD8 T lymphocyte interplay in controlling tumor growth , 2017, Cellular and Molecular Life Sciences.

[60]  N. Shah,et al.  Astrocytes promote progression of breast cancer metastases to the brain via a KISS1-mediated autophagy , 2017, Autophagy.

[61]  Cyrus M. Ghajar,et al.  Metastasis 'systems' biology: how are macro-environmental signals transmitted into microenvironmental cues for disseminated tumor cells? , 2017, Current opinion in cell biology.

[62]  D. Welch,et al.  The KISS1 metastasis suppressor appears to reverse the Warburg effect by shifting from glycolysis to mitochondrial beta-oxidation , 2017, Journal of Molecular Medicine.

[63]  U. Martinez-outschoorn,et al.  Metabolic coupling and the Reverse Warburg Effect in cancer: Implications for novel biomarker and anticancer agent development. , 2017, Seminars in oncology.

[64]  W. Colledge,et al.  Mechanistic insights into the more potent effect of KP-54 compared to KP-10 in vivo , 2017, PloS one.

[65]  Brian A. Aguado,et al.  Engineering the pre-metastatic niche , 2017, Nature Biomedical Engineering.

[66]  P. Bernadó,et al.  The metastasis suppressor KISS1 is an intrinsically disordered protein slightly more extended than a random coil , 2017, PloS one.

[67]  P. Carmeliet,et al.  The Link Between Angiogenesis and Endothelial Metabolism. , 2017, Annual review of physiology.

[68]  R. Gomis,et al.  Tumor cell dormancy , 2017, Molecular oncology.

[69]  Xuetao Cao,et al.  Characteristics and Significance of the Pre-metastatic Niche. , 2016, Cancer cell.

[70]  Younghun Jung,et al.  Axl is required for TGF-β2-induced dormancy of prostate cancer cells in the bone marrow , 2016, Scientific Reports.

[71]  P. Rameshwar,et al.  The bone marrow niche in support of breast cancer dormancy. , 2016, Cancer letters.

[72]  L. Hofbauer,et al.  The KISS1 Receptor as an In Vivo Microenvironment Imaging Biomarker of Multiple Myeloma Bone Disease , 2016, PloS one.

[73]  A. Tsung,et al.  Neutrophil Extracellular Traps Promote the Development and Progression of Liver Metastases after Surgical Stress. , 2016, Cancer research.

[74]  E. Turley,et al.  KISS1R signaling promotes invadopodia formation in human breast cancer cell via β-arrestin2/ERK. , 2016, Cellular signalling.

[75]  G. Kouraklis,et al.  A clinicopathological analysis of KISS1 and KISS1R expression in colorectal cancer , 2015, APMIS : acta pathologica, microbiologica, et immunologica Scandinavica.

[76]  C. Porta,et al.  The role of the cell–cell interactions in cancer progression , 2015, Journal of cellular and molecular medicine.

[77]  E. Bernstein,et al.  NR2F1 controls tumor cell dormancy via SOX9 and RARβ driven quiescence programs , 2014, Nature Communications.

[78]  Klaus Pantel,et al.  Biology, detection, and clinical implications of circulating tumor cells , 2014, EMBO molecular medicine.

[79]  M. Mareel,et al.  Carcinoma-associated fibroblasts provide operational flexibility in metastasis. , 2014, Seminars in cancer biology.

[80]  Yibin Kang,et al.  Targeting tumor-stromal interactions in bone metastasis. , 2014, Pharmacology & therapeutics.

[81]  G. Emons,et al.  Kisspeptin-10 Inhibits Stromal-Derived Factor 1–Induced Invasion of Human Endometrial Cancer Cells , 2014, International Journal of Gynecologic Cancer.

[82]  Kedar S Vaidya,et al.  Metastasis suppressor KISS1 seems to reverse the Warburg effect by enhancing mitochondrial biogenesis. , 2014, Cancer research.

[83]  N. Seidah,et al.  Furin Is the Major Proprotein Convertase Required for KISS1-to-Kisspeptin Processing , 2014, PloS one.

[84]  F. Pan,et al.  KiSS1 Inhibits Growth and Invasion of Osteosarcoma Cells through Inhibition of the MAPK Pathway , 2013, European journal of histochemistry : EJH.

[85]  P. Bragado,et al.  TGFβ2 dictates disseminated tumour cell fate in target organs through TGFβ-RIII and p38α/β signalling , 2013, Nature Cell Biology.

[86]  A. Babwah,et al.  Kisspeptin/KISS1R System in Breast Cancer , 2013, Journal of Cancer.

[87]  M. Zheng,et al.  Metastasis suppressor, NDRG1, mediates its activity through signaling pathways and molecular motors. , 2013, Carcinogenesis.

[88]  Y. Toiyama,et al.  Loss of the metastasis suppressor gene KiSS1 is associated with lymph node metastasis and poor prognosis in human colorectal cancer. , 2013, Oncology reports.

[89]  E. Keller,et al.  Mechanisms of Metastatic Tumor Dormancy , 2013, Journal of clinical medicine.

[90]  Shun Xu,et al.  Expression of KISS1 and KISS1R (GPR54) may be used as favorable prognostic markers for patients with non-small cell lung cancer. , 2013, International journal of oncology.

[91]  Yibin Kang,et al.  Tumor cell dissemination: emerging biological insights from animal models and cancer patients. , 2013, Cancer cell.

[92]  A. Möller,et al.  The pre-metastatic niche: finding common ground , 2013, Cancer and Metastasis Reviews.

[93]  D. Richardson,et al.  The iron-regulated metastasis suppressor NDRG1 targets NEDD4L, PTEN, and SMAD4 and inhibits the PI3K and Ras signaling pathways. , 2013, Antioxidants & redox signaling.

[94]  D. Welch,et al.  Metastasis suppressors in breast cancers: mechanistic insights and clinical potential , 2013, Journal of Molecular Medicine.

[95]  Paul J Hertzog,et al.  Silencing of Irf7 pathways in breast cancer cells promotes bone metastasis through immune escape , 2012, Nature Medicine.

[96]  N. Milton In Vitro Activities of Kissorphin, a Novel Hexapeptide KiSS-1 Derivative, in Neuronal Cells , 2012, Journal of amino acids.

[97]  M. Chew,et al.  Interleukin-15 Treatment Induces Weight Loss Independent of Lymphocytes , 2012, PloS one.

[98]  L. D. Kotan,et al.  Inactivating KISS1 Mutation and Hypogonadotropic Hypogonadism , 2012 .

[99]  C. Drake,et al.  Targeting the PD-1/B7-H1(PD-L1) pathway to activate anti-tumor immunity. , 2012, Current opinion in immunology.

[100]  D. Tang,et al.  Understanding cancer stem cell heterogeneity and plasticity , 2012, Cell Research.

[101]  T. Waldmann,et al.  Interleukin-15 biology and its therapeutic implications in cancer. , 2012, Trends in pharmacological sciences.

[102]  Mingyao Liu,et al.  Functional interrelationship between the WASF3 and KISS1 metastasis‐associated genes in breast cancer cells , 2011, International journal of cancer.

[103]  J. Massagué,et al.  VCAM-1 promotes osteolytic expansion of indolent bone micrometastasis of breast cancer by engaging α4β1-positive osteoclast progenitors. , 2011, Cancer cell.

[104]  M. Sznol,et al.  Blockade of the B7-H1/PD-1 Pathway for Cancer Immunotherapy , 2011, The Yale journal of biology and medicine.

[105]  Dirk Schadendorf,et al.  Epigenetic deregulation of TCF21 inhibits metastasis suppressor KISS1 in metastatic melanoma. , 2011, Carcinogenesis.

[106]  C. Cordon-Cardo,et al.  KISS1 methylation and expression as tumor stratification biomarkers and clinical outcome prognosticators for bladder cancer patients. , 2011, The American journal of pathology.

[107]  D. Yu,et al.  KiSS1 mediates platinum sensitivity and metastasis suppression in head and neck squamous cell carcinoma , 2011, Oncogene.

[108]  Bin Wang,et al.  The chemokine CXCL12 and its receptor CXCR4 promote glioma stem cell‐mediated VEGF production and tumour angiogenesis via PI3K/AKT signalling , 2011, The Journal of pathology.

[109]  Yitao Wang,et al.  Recent Advances in Breast Cancer Metastasis Suppressor 1 , 2011, The International journal of biological markers.

[110]  S. Lyle,et al.  Quiescent, Slow-Cycling Stem Cell Populations in Cancer: A Review of the Evidence and Discussion of Significance , 2010, Journal of oncology.

[111]  M. Phillip,et al.  A novel loss-of-function mutation in GPR54/KISS1R leads to hypogonadotropic hypogonadism in a highly consanguineous family. , 2011, The Journal of clinical endocrinology and metabolism.

[112]  D. Welch,et al.  Metastasis suppressor genes at the interface between the environment and tumor cell growth. , 2011, International review of cell and molecular biology.

[113]  P. Goss,et al.  Does tumour dormancy offer a therapeutic target? , 2010, Nature Reviews Cancer.

[114]  William E. Grizzle,et al.  KISS1 over-expression suppresses metastasis of pancreatic adenocarcinoma in a xenograft mouse model , 2010, Clinical & Experimental Metastasis.

[115]  Steven J. Greco,et al.  Mesenchymal Stem Cells Protect Breast Cancer Cells through Regulatory T Cells: Role of Mesenchymal Stem Cell-Derived TGF-β , 2010, The Journal of Immunology.

[116]  D. Welch,et al.  The KISS1 metastasis suppressor: a good night kiss for disseminated cancer cells. , 2010, European journal of cancer.

[117]  J. Sleeman,et al.  Cancer metastasis as a therapeutic target. , 2010, European journal of cancer.

[118]  Ying Sun,et al.  Expression of KISS1 and MMP-9 in non-small cell lung cancer and their relations to metastasis and survival. , 2010, Anticancer research.

[119]  S. Kanda,et al.  Functional and evolutionary insights into vertebrate kisspeptin systems from studies of fish brain. , 2010, Journal of fish biology.

[120]  Dali Li,et al.  KiSS1 suppresses TNFα‐induced breast cancer cell invasion via an inhibition of RhoA‐Mediated NF‐κB activation , 2009, Journal of cellular biochemistry.

[121]  W. Bin,et al.  Expression of KiSS‐1 Gene and its Role in Invasion and Metastasis of Human Hepatocellular Carcinoma , 2009, Anatomical record.

[122]  N. Fujii,et al.  Activation of Rho and Rho-Associated Kinase by GPR54 and KiSS1 Metastasis Suppressor Gene Product Induces Changes of Cell Morphology and Contributes to Apoptosis , 2009, Molecular Pharmacology.

[123]  N. Fujii,et al.  KiSS1 Metastasis Suppressor Gene Product Induces Suppression of Tyrosine Kinase Receptor Signaling to Akt, Tumor Necrosis Factor Family Ligand Expression, and Apoptosis , 2009, Molecular Pharmacology.

[124]  Dan Theodorescu,et al.  Learning therapeutic lessons from metastasis suppressor proteins , 2009, Nature Reviews Cancer.

[125]  Bethan Psaila,et al.  The metastatic niche: adapting the foreign soil , 2009, Nature Reviews Cancer.

[126]  R. Shin,et al.  Nuclear magnetic resonance and circular dichroism study of metastin (Kisspeptin-54) structure in solution , 2009, Clinical & Experimental Metastasis.

[127]  H. Vaudry,et al.  Molecular evolution of multiple forms of kisspeptins and GPR54 receptors in vertebrates. , 2009, Endocrinology.

[128]  A. Chambers,et al.  Tumor dormancy and metastasis. , 2009, Advances in cancer research.

[129]  Kyung-Hee Lee,et al.  Kiss-1 suppresses MMP-9 expression by activating p38 MAP kinase in human stomach cancer. , 2009, Oncology research.

[130]  K. Watabe,et al.  Drug development against metastasis-related genes and their pathways: a rationale for cancer therapy. , 2008, Biochimica et biophysica acta.

[131]  S. Lockett,et al.  Inhibition of metastatic outgrowth from single dormant tumor cells by targeting the cytoskeleton. , 2008, Cancer research.

[132]  C. Horak,et al.  The role of metastasis suppressor genes in metastatic dormancy   , 2008 .

[133]  R. Vessella,et al.  Cancer micrometastasis and tumour dormancy   , 2008, APMIS : acta pathologica, microbiologica, et immunologica Scandinavica.

[134]  J. Marshall,et al.  Expression of the metastasis suppressor gene KISS1 in uveal melanoma , 2008, Eye.

[135]  Kedar S Vaidya,et al.  Metastasis suppressors genes in cancer. , 2008, The international journal of biochemistry & cell biology.

[136]  P. Dijke,et al.  TGF-β and BMP7 interactions in tumour progression and bone metastasis , 2007, Clinical & Experimental Metastasis.

[137]  Didier Marot,et al.  High tumoral levels of Kiss1 and G-protein-coupled receptor 54 expression are correlated with poor prognosis of estrogen receptor-positive breast tumors. , 2007, Endocrine-related cancer.

[138]  M. Bilban,et al.  Kisspeptins and the placenta: Regulation of trophoblast invasion , 2007, Reviews in Endocrine and Metabolic Disorders.

[139]  Kedar S Vaidya,et al.  Requirement of KISS1 secretion for multiple organ metastasis suppression and maintenance of tumor dormancy. , 2007, Journal of the National Cancer Institute.

[140]  P. ten Dijke,et al.  TGF-beta and BMP7 interactions in tumour progression and bone metastasis. , 2007, Clinical & experimental metastasis.

[141]  J. Aguirre-Ghiso,et al.  Tumor cell dormancy induced by p38SAPK and ER-stress signaling: An adaptive advantage for metastatic cells? , 2006, Cancer biology & therapy.

[142]  R. Kaplan,et al.  Priming the 'soil' for breast cancer metastasis: the pre-metastatic niche. , 2006, Breast disease.

[143]  S. Seminara Metastin and its G protein-coupled receptor, GPR54: Critical pathway modulating GnRH secretion , 2005, Frontiers in Neuroendocrinology.

[144]  L. Yin,et al.  KiSS1 Suppresses Metastasis in Human Ovarian Cancer via Inhibition of Protein Kinase C Alpha , 2005, Clinical & Experimental Metastasis.

[145]  A. Chambers,et al.  Therapeutic targets for antimetastatic therapy , 2004, Expert opinion on therapeutic targets.

[146]  J. Blenis,et al.  ERK and p38 MAPK-Activated Protein Kinases: a Family of Protein Kinases with Diverse Biological Functions , 2004, Microbiology and Molecular Biology Reviews.

[147]  G. Roodman Mechanisms of bone metastasis. , 2004, Discovery medicine.

[148]  D. Welch,et al.  U-77,863: a novel cinnanamide isolated from Streptomyces griseoluteus that inhibits cancer invasion and metastasis , 1993, Clinical & Experimental Metastasis.

[149]  D. Welch,et al.  KISS1 metastasis suppression and emergent pathways , 2004, Clinical & Experimental Metastasis.

[150]  T. Tsuruo,et al.  Inhibition of spontaneous and experimental tumor metastasis by the calcium antagonist verapamil , 2004, Cancer Chemotherapy and Pharmacology.

[151]  E. Génin,et al.  Hypogonadotropic hypogonadism due to loss of function of the KiSS1-derived peptide receptor GPR54 , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[152]  M. Ikeguchi,et al.  Quantitative reverse transcriptase polymerase chain reaction analysis for KiSS-1 and orphan G-protein-coupled receptor (hOT7T175) gene expression in hepatocellular carcinoma , 2003, Journal of Cancer Research and Clinical Oncology.

[153]  P. Steeg,et al.  Metastasis suppressor genes: basic biology and potential clinical use. , 2003, Clinical breast cancer.

[154]  V. Robinson,et al.  Metastasis suppression: the evolving role of metastasis suppressor genes for regulating cancer cell growth at the secondary site. , 2003, The Journal of urology.

[155]  Y. Okada,et al.  Cleavage of metastasis suppressor gene product KiSS-1 protein/metastin by matrix metalloproteinases , 2003, Oncogene.

[156]  L. Freedman,et al.  Melanoma metastasis suppression by chromosome 6: evidence for a pathway regulated by CRSP3 and TXNIP. , 2003, Cancer research.

[157]  S. Schiffmann,et al.  The Metastasis Suppressor Gene KiSS-1 Encodes Kisspeptins, the Natural Ligands of the Orphan G Protein-coupled Receptor GPR54* , 2001, The Journal of Biological Chemistry.

[158]  P. Emson,et al.  AXOR12, a Novel Human G Protein-coupled Receptor, Activated by the Peptide KiSS-1* , 2001, The Journal of Biological Chemistry.

[159]  O. Nishimura,et al.  Metastasis suppressor gene KiSS-1 encodes peptide ligand of a G-protein-coupled receptor , 2001, Nature.

[160]  B. O'dowd,et al.  Discovery of a receptor related to the galanin receptors , 1999, FEBS letters.

[161]  R. Scheuermann,et al.  Cancer dormancy. VII. A regulatory role for CD8+ T cells and IFN-gamma in establishing and maintaining the tumor-dormant state. , 1999, Journal of immunology.

[162]  J. H. Lee,et al.  Suppression of metastasis in human breast carcinoma MDA-MB-435 cells after transfection with the metastasis suppressor gene, KiSS-1. , 1997, Cancer research.

[163]  J M Trent,et al.  KiSS-1, a novel human malignant melanoma metastasis-suppressor gene. , 1996, Journal of the National Cancer Institute.

[164]  B. Weissman,et al.  Microcell-mediated transfer of chromosome 6 into metastatic human C8161 melanoma cells suppresses metastasis but does not inhibit tumorigenicity. , 1994, Oncogene.

[165]  J. Mccormack,et al.  Mitochondrial Ca2+ transport and the role of intramitochondrial Ca2+ in the regulation of energy metabolism. , 1993, Developmental neuroscience.

[166]  L. Liotta,et al.  Altered expression of NM23, a gene associated with low tumor metastatic potential, during adenovirus 2 Ela inhibition of experimental metastasis. , 1988, Cancer research.

[167]  I. Fidler,et al.  Metastasis: Quantitative Analysis of Distribution and Fate of Tumor Emboli Labeled With 125I-5-Iodo-2′ -deoxyuridine , 1970 .