Approaches in highly parameterized inversion - PEST++, a Parameter ESTimation code optimized for large environmental models

.........................................................................................................................................................

[1]  J. Doherty Modeling: Picture Perfect or Abstract Art? , 2011, Ground water.

[2]  R. Larsen Lanczos Bidiagonalization With Partial Reorthogonalization , 1998 .

[3]  J. Doherty,et al.  Role of the calibration process in reducing model predictive error , 2005 .

[4]  Linda Pilkey-Jarvis,et al.  :Useless Arithmetic: Why Environmental Scientists Cant Predict the Future , 2007 .

[5]  John Doherty,et al.  Response to Comment on “Two statistics for evaluating parameter identifiability and error reduction” , 2010 .

[6]  Stefano Tarantola,et al.  Sensitivity Analysis in Practice: A Guide to Assessing Scientific Models , 2004 .

[7]  John Doherty,et al.  Approaches to Highly Parameterized Inversion: A Guide to Using PEST for Model-Parameter and Predictive-Uncertainty Analysis , 2014 .

[8]  R. Hunt,et al.  Approaches to highly parameterized inversion-A guide to using PEST for groundwater-model calibration , 2010 .

[9]  J. Doherty,et al.  A hybrid regularized inversion methodology for highly parameterized environmental models , 2005 .

[10]  Randall J. Hunt,et al.  Approaches in Highly Parameterized Inversion: GENIE, a General Model- Independent TCP/IP Run Manager , 2014 .

[11]  John Doherty,et al.  Two statistics for evaluating parameter identifiability and error reduction , 2009 .

[12]  Willem A. Schreuder,et al.  Using a Cloud to Replenish Parched Groundwater Modeling Efforts , 2010, Ground water.

[13]  John Doherty,et al.  Efficient regularization and uncertainty analysis using a global optimization methodology , 2010 .

[14]  Keith Beven,et al.  Environmental Modelling , 2007 .

[15]  N Oreskes,et al.  Verification, Validation, and Confirmation of Numerical Models in the Earth Sciences , 1994, Science.

[16]  D. Kalman A Singularly Valuable Decomposition: The SVD of a Matrix , 1996 .

[17]  J. Doherty,et al.  Calibration‐constrained Monte Carlo analysis of highly parameterized models using subspace techniques , 2009 .

[18]  Michael A. Saunders,et al.  LSQR: An Algorithm for Sparse Linear Equations and Sparse Least Squares , 1982, TOMS.

[19]  R. Hunt,et al.  Are Models Too Simple? Arguments for Increased Parameterization , 2007, Ground water.