Analysis of Galileo and GPS Integration for GNSS Tomography

Global Navigation Satellite System (GNSS) tomography provides 3-D reconstructions of atmosphere wet refractivity, related to water vapor. A simulated analysis of the integration of Global Positioning System and future Galileo data is presented. Atmospheric refractivity is derived from radiosonde data acquired over the Lisbon area. The impact of Galileo data on the tomographic reconstruction is assessed. Furthermore, horizontal anomalies are added to a reference vertical profile of atmospheric refractivity to reproduce low-level dry or wet air intrusions, a phenomenon commonly observed in meteorological data acquired by both radiosonde and satellites. The dependence of tomographic solution on the GNSS network density is also analyzed. Better reconstruction capabilities in the lower layers are observed when increasing the network density.

[1]  Steven Businger,et al.  GPS Meteorology: Mapping Zenith Wet Delays onto Precipitable Water , 1994 .

[2]  W. Menke Geophysical data analysis : discrete inverse theory , 1984 .

[3]  David D. Turner,et al.  Mesoscale GPS tomography applied to the 12 June 2002 convective initiation event of IHOP_2002 , 2009 .

[4]  Pedro M. A. Miranda,et al.  Experimental Study on the Atmospheric Delay Based on GPS, SAR Interferometry, and Numerical Weather Model Data , 2013, IEEE Transactions on Geoscience and Remote Sensing.

[5]  Thomas A. Herring,et al.  Impact of a priori zenith hydrostatic delay errors on GPS estimates of station heights and zenith total delays , 2006 .

[6]  Joao P. S. Catalao,et al.  On the inclusion of GPS precipitable water vapour in the nowcasting of rainfall , 2015 .

[7]  Aurelian Constantinescu,et al.  GPS/GALILEO/GLONASS Hybrid Satellite Constellation Simulator Ð GPS Constellation Validation and Analysis , 2005 .

[8]  Bernhard Hofmann-Wellenhof,et al.  GNSS - Global Navigation Satellite Systems: GPS, GLONASS, Galileo, and more , 2007 .

[9]  G. Ruffini,et al.  4D tropospheric tomography using GPS slant wet delays , 2000 .

[10]  Joao Catalao,et al.  Inclusion of high resolution MODIS maps on a 3D tropospheric water vapor GPS tomography model , 2015, SPIE Remote Sensing.

[11]  Galina Dick,et al.  GNSS water vapour tomography – Expected improvements by combining GPS, GLONASS and Galileo observations , 2011 .

[12]  Marie-Noëlle Bouin,et al.  GPS water vapour tomography: preliminary results from the ESCOMPTE field experiment , 2005 .

[13]  J.H. Hahn,et al.  Implementation of the GPS to Galileo time offset (GGTO) , 2005, Proceedings of the 2005 IEEE International Frequency Control Symposium and Exposition, 2005..

[14]  J. Catalão,et al.  Can spaceborne SAR interferometry be used to study the temporal evolution of PWV , 2013 .

[15]  G. Ruffini,et al.  Tropospheric Tomography using GPS Estimated Slant Delays , 2008 .

[16]  H. Schuh,et al.  Troposphere mapping functions for GPS and very long baseline interferometry from European Centre for Medium‐Range Weather Forecasts operational analysis data , 2006 .

[17]  Pedro Benevides,et al.  Bridging InSAR and GPS Tomography: A New Differential Geometrical Constraint , 2016, IEEE Transactions on Geoscience and Remote Sensing.

[18]  Witold Rohm,et al.  The ground GNSS tomography – unconstrained approach , 2013 .

[19]  Armin Raabe,et al.  Preconditions to ground based GPS water vapour tomography , 2007 .

[20]  Giovanni Nico,et al.  Uncertainty Assessment of the Estimated Atmospheric Delay Obtained by a Numerical Weather Model (NMW) , 2015, IEEE Transactions on Geoscience and Remote Sensing.