Subspaces Clustering Approach to Lossy Image Compression

In this contribution lossy image compression based on subspaces clustering is considered. Given a PCA factorization of each cluster into subspaces and a maximal compression error, we show that the selection of those subspaces that provide the optimal lossy image compression is equivalent to the 0-1 Knapsack Problem. We present a theoretical and an experimental comparison between accurate and approximate algorithms for solving the 0-1 Knapsack problem in the case of lossy image compression.

[1]  Jacek Tabor,et al.  Weighted Approach to Projective Clustering , 2013, CISIM.

[2]  Nabil H. Mustafa,et al.  k-means projective clustering , 2004, PODS.

[3]  Shen-Chuan Tai,et al.  A fast Linde-Buzo-Gray algorithm in image vector quantization , 1998 .

[4]  M.-C. Su,et al.  A new cluster validity measure and its application to image compression , 2004, Pattern Analysis and Applications.

[5]  Deeparnab Chakrabarty,et al.  Knapsack Problems , 2008 .

[6]  Khalid Saeed,et al.  Computer Information Systems and Industrial Management , 2012, Lecture Notes in Computer Science.

[7]  Paul Geladi,et al.  Principal Component Analysis , 1987, Comprehensive Chemometrics.

[8]  QUANTIZATION OF INFORMATION THEORY , 2014 .

[9]  Huan Liu,et al.  Subspace clustering for high dimensional data: a review , 2004, SKDD.

[10]  Heikki Mannila,et al.  Random projection in dimensionality reduction: applications to image and text data , 2001, KDD '01.

[11]  Paolo Toth,et al.  Knapsack Problems: Algorithms and Computer Implementations , 1990 .

[12]  Paul Scheunders,et al.  A genetic c-Means clustering algorithm applied to color image quantization , 1997, Pattern Recognit..

[13]  Chein-I Chang,et al.  Unsupervised hyperspectral image analysis with projection pursuit , 2000, IEEE Trans. Geosci. Remote. Sens..

[14]  Paul Scheunders,et al.  A genetic Lloyd-Max image quantization algorithm , 1996, Pattern Recognit. Lett..

[15]  L. Rabiner,et al.  The acoustics, speech, and signal processing society - A historical perspective , 1984, IEEE ASSP Magazine.

[16]  Hans-Peter Kriegel,et al.  Subspace clustering , 2012, WIREs Data Mining Knowl. Discov..

[17]  Hans-Peter Kriegel,et al.  Clustering high-dimensional data: A survey on subspace clustering, pattern-based clustering, and correlation clustering , 2009, TKDD.

[18]  R. Gray,et al.  Vector quantization , 1984, IEEE ASSP Magazine.

[19]  Arto Kaarna,et al.  Compression of multispectral remote sensing images using clustering and spectral reduction , 2000, IEEE Trans. Geosci. Remote. Sens..

[20]  Editors-in-chief,et al.  Encyclopedia of statistics in behavioral science , 2005 .

[21]  Heng Tao Shen,et al.  Principal Component Analysis , 2009, Encyclopedia of Biometrics.

[22]  William Equitz,et al.  A new vector quantization clustering algorithm , 1989, IEEE Trans. Acoust. Speech Signal Process..

[23]  Jirí Grim Multimodal discrete Karhunen-Loève expansion , 1986, Kybernetika.