Deducing interpolating subdivision schemes from approximating subdivision schemes
暂无分享,去创建一个
Zheng Li | Xiaonan Luo | Shujin Lin | Fang You | Xiaonan Luo | Shujin Lin | F. You | Zheng Li
[1] Jos Stam,et al. A Unified Subdivision Scheme for Polygonal Modeling , 2001, Comput. Graph. Forum.
[2] Ahmad H. Nasri,et al. Polyhedral subdivision methods for free-form surfaces , 1987, TOGS.
[3] Andrei Iones,et al. Turning the approximating Catmull-Clark subdivision scheme into a locally interpolating surface modeling tool , 2001, Proceedings International Conference on Shape Modeling and Applications.
[4] Charles T. Loop. Bounded curvature triangle mesh subdivision with the convex hull property , 2002, The Visual Computer.
[5] Peter Schröder,et al. Interpolating Subdivision for meshes with arbitrary topology , 1996, SIGGRAPH.
[6] J. Clark,et al. Recursively generated B-spline surfaces on arbitrary topological meshes , 1978 .
[7] Malcolm A. Sabin,et al. Behaviour of recursive division surfaces near extraordinary points , 1998 .
[8] Ulf Labsik,et al. Interpolatory √3‐Subdivision , 2000 .
[9] Ulrich Reif,et al. A unified approach to subdivision algorithms near extraordinary vertices , 1995, Comput. Aided Geom. Des..
[10] Luiz Velho,et al. 4-8 Subdivision , 2001, Comput. Aided Geom. Des..
[11] Tony DeRose,et al. Efficient, fair interpolation using Catmull-Clark surfaces , 1993, SIGGRAPH.
[12] Denis Z orin. Smoothness of Stationary Subdivision on Irregular Meshes , 1998 .
[13] Jos Stam,et al. Exact evaluation of Catmull-Clark subdivision surfaces at arbitrary parameter values , 1998, SIGGRAPH.
[14] Leif Kobbelt,et al. Interpolatory Subdivision on Open Quadrilateral Nets with Arbitrary Topology , 1996, Comput. Graph. Forum.
[15] Charles T. Loop,et al. Smooth Subdivision Surfaces Based on Triangles , 1987 .
[16] N. Dyn,et al. A butterfly subdivision scheme for surface interpolation with tension control , 1990, TOGS.