A scale of metal ion binding strengths correlating with ionic charge, Pauling electronegativity, toxicity, and other physiological effects.

[1]  T. Kinraide Plasma membrane surface potential (ψpm) as a determinant of ion bioavailability: A critical analysis of new and published toxicological studies and a simplified method for the computation of plant ψpm , 2006, Environmental toxicology and chemistry.

[2]  U. Yermiyahu,et al.  Sorption of Copper and Zinc to the Plasma Membrane of Wheat Root , 2004, The Journal of Membrane Biology.

[3]  A. Urvoas,et al.  Metal-binding stoichiometry and selectivity of the copper chaperone CopZ from Enterococcus hirae. , 2004, European journal of biochemistry.

[4]  D. Parker,et al.  Zinc rhizotoxicity in wheat and radish is alleviated by micromolar levels of magnesium and potassium in solution culture , 2004, Plant and Soil.

[5]  C. Exley The pro-oxidant activity of aluminum. , 2004, Free radical biology & medicine.

[6]  D. Parker,et al.  Relative effectiveness of calcium and magnesium in the alleviation of rhizotoxicity in wheat induced by copper, zinc, aluminum, sodium, and low pH , 2004, Plant and Soil.

[7]  P. Århem,et al.  Metal ion effects on ion channel gating , 2003, Quarterly Reviews of Biophysics.

[8]  F. Baluška,et al.  Cytoskeleton-Plasma Membrane-Cell Wall Continuum in Plants. Emerging Links Revisited1 , 2003, Plant Physiology.

[9]  U. Yermiyahu,et al.  Electrical Potentials of Plant Cell Walls in Response to the Ionic Environment1 , 2003, Plant Physiology.

[10]  John D. Walker,et al.  Quantitative cationic‐activity relationships for predicting toxicity of metals , 2003, Environmental toxicology and chemistry.

[11]  John D. Walker,et al.  QSAR analysis of metal ion toxicity data in sunflower callus cultures (Helianthus annuus “Sunspot”) , 2003 .

[12]  J. Duffus "Heavy metals" a meaningless term? (IUPAC Technical Report) , 2002, Chemistry International.

[13]  H. Wolterbeek,et al.  Predicting metal toxicity revisited: general properties vs. specific effects. , 2001, The Science of the total environment.

[14]  T. Kawano,et al.  Cation‐induced superoxide generation in tobacco cell suspension culture is dependent on ion valence , 2001 .

[15]  L. Bülow,et al.  Metal-binding proteins and peptides in bioremediation and phytoremediation of heavy metals. , 2001, Trends in biotechnology.

[16]  T. Kinraide Interactions among Ca2+, Na+ and K+ in salinity toxicity: quantitative resolution of multiple toxic and ameliorative effects , 1999 .

[17]  U. Yermiyahu,et al.  Surface properties of plasma membrane vesicles isolated from melon (Cucumus melo L.) root cells differing in salinity tolerance , 1999 .

[18]  Yermiyahu,et al.  Computation of surface electrical potentials of plant cell membranes . Correspondence To published zeta potentials from diverse plant sources , 1998, Plant physiology.

[19]  Phillip L. Williams,et al.  Use of ion characteristics to predict relative toxicity of mono-, di- and trivalent metal ions: Caenorhabditis elegans LC50 , 1998 .

[20]  E. Tipping Humic Ion-Binding Model VI: An Improved Description of the Interactions of Protons and Metal Ions with Humic Substances , 1998 .

[21]  U. Yermiyahu,et al.  Sorption of Aluminum to Plasma Membrane Vesicles Isolated from Roots of Scout 66 and Atlas 66 Cultivars of Wheat , 1997, Plant physiology.

[22]  U. Yermiyahu,et al.  Binding and Electrostatic Attraction of Lanthanum (La3+) and Aluminum (Al3+) to Wheat Root Plasma Membranes , 1997, The Journal of Membrane Biology.

[23]  C. Leyval,et al.  Effect of heavy metal pollution on mycorrhizal colonization and function: physiological, ecological and applied aspects , 1997, Mycorrhiza.

[24]  T. Kinraide Reconsidering the rhizotoxicity of hydroxyl, sulphate, and fluoride complexes of aluminium , 1997 .

[25]  M. C. Newman,et al.  Predicting the relative toxicity of metal ions using ion characteristics: Microtox® bioluminescence assay , 1996 .

[26]  T. Wagatsuma,et al.  Comparative toxicity of Al3+, Yb3+, and La3+ to root-tip cells differing in tolerance to high Al3+ in terms of ionic potentials of dehydrated trivalent cations , 1996 .

[27]  T. Bleve-Zacheo,et al.  Specificity of zinc binding to myelin basic protein , 1995, Neurochemical Research.

[28]  J. M. Brady,et al.  Binding of hard and soft metal ions to Rhizopus arrhizus biomass , 1995 .

[29]  E. Delhaize,et al.  Aluminum Toxicity and Tolerance in Plants , 1995, Plant physiology.

[30]  R. Daniel,et al.  The effect of metal ions on the activity and thermostability of the extracellular proteinase from a thermophilic Bacillus, strain EA.1. , 1992, The Biochemical journal.

[31]  M. Sheets,et al.  Extracellular divalent and trivalent cation effects on sodium current kinetics in single canine cardiac Purkinje cells. , 1992, The Journal of physiology.

[32]  C. Carlson,et al.  Effects of selected trace metals on germinating seeds of six plant species , 1991 .

[33]  G. Gadd Heavy metal accumulation by bacteria and other microorganisms , 1990, Experientia.

[34]  P. O'shea,et al.  Zeta potential measurements of cell wall preparations from Regnellidium diphyllum and Nymphoides peltata , 1990 .

[35]  J. Berg,et al.  Zinc fingers and other metal-binding domains. Elements for interactions between macromolecules. , 1990, The Journal of biological chemistry.

[36]  H. Marschner Mineral Nutrition of Higher Plants , 1988 .

[37]  C. Gillet,et al.  Activity Coefficients and Selectivity Values of Cu++, Zn++ and Ca++ Ions Adsorbed in the Nitella flexilis L. Cell wall during Triangular Ion Exchanges , 1982 .

[38]  J. Gergely,et al.  Studies on a metal-binding protein of the sarcoplasmic reticulum. , 1974, The Journal of biological chemistry.

[39]  Ralph G. Pearson,et al.  HARD AND SOFT ACIDS AND BASES , 1963 .

[40]  E. R. Nightingale,et al.  PHENOMENOLOGICAL THEORY OF ION SOLVATION. EFFECTIVE RADII OF HYDRATED IONS , 1959 .

[41]  W. Shaw Toxicity of Cations toward Living Systems , 1954 .

[42]  J. R. Jones The Relation Between the Electrolytic Solution Pressures of the Metals and Their Toxicity to the Stickleback (Gasterosteus Aculeatus L.) , 1939 .

[43]  Albert P. Mathews,et al.  THE RELATION BETWEEN SOLUTION TENSION, ATOMIC VOLUME, AND THE PHYSIOLOGICAL ACTION OF THE ELEMENTS , 1904 .

[44]  P. Huang,et al.  Biogeochemistry of trace elements in the rhizosphere , 2005 .

[45]  Robert M. Smith,et al.  NIST Critically Selected Stability Constants of Metal Complexes Database , 2004 .

[46]  Robert M. Smith,et al.  NIST standard reference database 46 version 8.0: NIST critically selected stability constants of metal complexes , 2004 .

[47]  Wilhelm Gruissem,et al.  Biochemistry & Molecular Biology of Plants , 2002 .

[48]  Torben Smith Sørensen,et al.  Surface chemistry and electrochemistry of membranes , 1999 .

[49]  S. V Matagi,et al.  A review of Heavy Metal Removal Mechanisms in wetlands , 1998 .

[50]  B. Allard,et al.  Effects of pH and ionic strength on the adsorption of Cs, Sr, Eu, Zn, Cd and Hg byPseudomonas putida , 1997 .

[51]  W. Lindsay Chemical equilibria in soils , 1979 .

[52]  R. J. P. Williams,et al.  637. The stability of transition-metal complexes , 1953 .