Kinetic studies on depurination and detritylation of CPG-bound intermediates during oligonucleotide synthesis.

Fully protected CPG-immobilized monomer, dimer and trimer oligonucleotides were used to study depurination during the chemical synthesis of oligonucleotides. Disappearance of the oligonucleotide during acid exposure time relative to an internal thymidine standard not subject to depurination was monitored by reverse phase HPLC analysis. Depurination half-times obtained for dichloroacetic acid (DCA) and trichloroacetic acid (TCA) in methylene chloride were found to be 3% DCA >> 15% DCA > 3% TCA. In order to understand the implications of depurination during DNA synthesis, the detritylation kinetics of model compounds DMT-dG-pT dimer and DMT-[17mer] mixed-base sequence were also measured. These results improve our ability to properly balance the contradictory goals of obtaining maximum detritylation with minimum depurination in oligonucleotide synthesis.