Parameterized Complexity of Edge Interdiction Problems

For an optimization problem on edge-weighted graphs, the corresponding interdiction problem can be formulated as a game consisting of two players, namely, an interdictor and an evader, who compete on an objective with opposing interests. In an edge interdiction problem, every edge of the input graph is associated with an interdiction cost. The interdictor interdicts the graph by modifying the edges in the graph and the number of such modifications is bounded by the interdictor’s budget. The evader then solves the given optimization problem on the modified graph. The action of the interdictor must impede the evader as much as possible.

[1]  Ken-ichi Kawarabayashi,et al.  The Minimum k-way Cut of Bounded Size is Fixed-Parameter Tractable , 2011, 2011 IEEE 52nd Annual Symposium on Foundations of Computer Science.

[2]  Feng Pan,et al.  Interdiction problems on planar graphs , 2013, Discret. Appl. Math..

[3]  Sanjeev Arora,et al.  A 2 + ɛ approximation algorithm for the k-MST problem , 2000, SODA '00.

[4]  Cynthia A. Phillips,et al.  The network inhibition problem , 1993, STOC.

[5]  Rico Zenklusen,et al.  Matching interdiction , 2008, Discret. Appl. Math..

[6]  Wen-Lian Hsu,et al.  Substitution Decomposition on Chordal Graphs and Applications , 1991, ISA.

[7]  Rolf Niedermeier,et al.  Invitation to Fixed-Parameter Algorithms , 2006 .

[8]  Michael Dinitz,et al.  Packing Interdiction and Partial Covering Problems , 2013, IPCO.

[9]  W. C. Turner,et al.  Optimal interdiction policy for a flow network , 1971 .

[10]  Roberto Solis-Oba,et al.  Increasing the weight of minimum spanning trees , 1996, SODA '96.

[11]  Alan Washburn,et al.  Two-Person Zero-Sum Games for Network Interdiction , 1995, Oper. Res..

[12]  Fedor V. Fomin,et al.  Subexponential algorithms for partial cover problems , 2011, Inf. Process. Lett..

[13]  Weifa Liang,et al.  Finding the k Most Vital Edges in the Minimum Spanning Tree Problem , 1997, Parallel Comput..

[14]  Omid Amini,et al.  Implicit branching and parameterized partial cover problems , 2011, J. Comput. Syst. Sci..

[15]  R. Kevin Wood,et al.  Deterministic network interdiction , 1993 .

[16]  Rolf Niedermeier,et al.  Parameterized Complexity of Generalized Vertex Cover Problems , 2005, WADS.

[17]  R. Forcade,et al.  Smallest maximal matchings in the graph of the d-dimensional cube , 1973 .

[18]  Reuven Bar-Yehuda,et al.  Using homogenous weights for approximating the partial cover problem , 2001, SODA '99.

[19]  Sanjeev Arora,et al.  A 2+epsilon approximation algorithm for the k-MST problem , 2000, SODA.

[20]  R. Carr,et al.  A Decomposition-Based Pseudoapproximation Algorithm for Network Flow Inhibition , 2003 .

[21]  N. Assimakopoulos,et al.  A network interdiction model for hospital infection control. , 1987, Computers in biology and medicine.

[22]  Michael R. Fellows,et al.  Cutting Up is Hard to Do: the Parameterized Complexity of k-Cut and Related Problems , 2003, CATS.

[23]  Weifa Liang Finding the k most vital edges with respect to minimum spanning trees for fixed k , 2001, Discret. Appl. Math..

[24]  J. Salmeron,et al.  Worst-Case Interdiction Analysis of Large-Scale Electric Power Grids , 2009, IEEE Transactions on Power Systems.

[25]  Mihalis Yannakakis,et al.  Edge Dominating Sets in Graphs , 1980 .