Guarding and Searching Polyhedra

We tackle the Art Gallery Problem and the Searchlight Scheduling Problem in 3-dimensional polyhedral environments, putting special emphasis on edge guards and orthogonal polyhedra.

[1]  Michael Kaufmann,et al.  On the Rectilinear Art Gallery Problem - Algorithmic Aspects , 1990, WG.

[2]  Francesco Bullo,et al.  A Complete Algorithm for Searchlight Scheduling , 2011, Int. J. Comput. Geom. Appl..

[3]  Stephan Eidenbenz,et al.  Inapproximability Results for Guarding Polygons and Terrains , 2001, Algorithmica.

[4]  A W Tucker,et al.  On Combinatorial Topology. , 1932, Proceedings of the National Academy of Sciences of the United States of America.

[5]  Michael T. Goodrich,et al.  Almost optimal set covers in finite VC-dimension , 1995, Discret. Comput. Geom..

[6]  B. Chazelle Computational geometry and convexity , 1980 .

[7]  Masafumi Yamashita,et al.  The Searchlight Scheduling Problem , 1990, SIAM J. Comput..

[8]  Godfried T. Toussaint,et al.  An Optimal Algorithm for Determining the Visibility of a Polygon from an Edge , 1981, IEEE Transactions on Computers.

[9]  Herbert Edelsbrunner,et al.  Geometry and Topology for Mesh Generation , 2001, Cambridge monographs on applied and computational mathematics.

[10]  Salil P. Vadhan,et al.  Computational Complexity , 2005, Encyclopedia of Cryptography and Security.

[11]  G. Kalai,et al.  Guarding galleries where every point sees a large area , 1997 .

[12]  Erik D. Demaine,et al.  Edge-guarding Orthogonal Polyhedra , 2011, CCCG.

[13]  Csaba D. Tóth,et al.  Open Guard Edges and Edge Guards in Simple Polygons , 2011, CCCG.

[14]  Frank Hoffmann,et al.  The art gallery theorem for polygons with holes , 1991, [1991] Proceedings 32nd Annual Symposium of Foundations of Computer Science.

[15]  Diane L. Souvaine,et al.  An efficient algorithm for guard placement in polygons with holes , 1995, Discret. Comput. Geom..

[16]  Francesco Bullo,et al.  Asynchronous distributed searchlight scheduling , 2007, 2007 46th IEEE Conference on Decision and Control.

[17]  Raimund Seidel,et al.  On the difficulty of triangulating three-dimensional Nonconvex Polyhedra , 1992, Discret. Comput. Geom..

[18]  Mark de Berg,et al.  Hidden Surface Removal for C-oriented Polyhedra , 1992, Comput. Geom..

[19]  P. Giblin Graphs, surfaces, and homology , 1977 .

[20]  Giovanni Viglietta,et al.  Searching Polyhedra by rotating half-Planes , 2011, Int. J. Comput. Geom. Appl..

[21]  Diane L. Souvaine,et al.  Face guards for art galleries , 2011 .

[22]  D. T. Lee,et al.  Computational complexity of art gallery problems , 1986, IEEE Trans. Inf. Theory.

[23]  Bernard Chazelle,et al.  Bounds on the size of tetrahedralizations , 1994, SCG '94.

[24]  T. S. Michael,et al.  How to Guard an Art Gallery and Other Discrete Mathematical Adventures , 2009 .

[25]  Javier Cano,et al.  Hidden Mobile Guards in Simple Polygons , 2012, CCCG.

[26]  Bernard Chazelle Triangulating a simple polygon in linear time , 1991, Discret. Comput. Geom..

[27]  B. K. Lahiri A First Course in Algebraic Topology , 2000 .

[28]  Joseph O'Rourke,et al.  Galleries need fewer mobile guards: A variation on Chvátal's theorem , 1983 .

[29]  J. O'Rourke Art gallery theorems and algorithms , 1987 .

[30]  Joseph O'Rourke,et al.  Computational Geometry in C. , 1995 .

[31]  Shin-Ichi Nakano,et al.  A Linear Algorithm for Optimal Orthogonal Drawings of Triconnected Cubic Plane Graphs , 1997, Graph Drawing.

[32]  J. O'Rourke,et al.  Stationing guards in rectilinear art galleries , 1984 .

[33]  F. Frances Yao,et al.  Optimal binary space partitions for orthogonal objects , 1990, SODA '90.

[34]  Bernard Chazelle,et al.  Triangulating a nonconvex polytope , 1990, Discret. Comput. Geom..

[35]  Stephan Eidenbenz,et al.  Inapproximability Results for Guarding Polygons without Holes , 1998, ISAAC.

[36]  Giovanni Viglietta,et al.  Partial Searchlight Scheduling is Strongly PSPACE-complete , 2012, CCCG.

[37]  Christos H. Papadimitriou,et al.  An Algorithm for Shortest-Path Motion in Three Dimensions , 1985, Inf. Process. Lett..

[38]  Jorge Urrutia,et al.  Art Gallery and Illumination Problems , 2000, Handbook of Computational Geometry.

[39]  David Haussler,et al.  Learnability and the Vapnik-Chervonenkis dimension , 1989, JACM.

[40]  V. Chvátal A combinatorial theorem in plane geometry , 1975 .

[41]  Masafumi Yamashita,et al.  Searching a polygonal region by a group of stationary k-searchers , 2004, Inf. Process. Lett..

[42]  Vladimir Vapnik,et al.  Chervonenkis: On the uniform convergence of relative frequencies of events to their probabilities , 1971 .

[43]  T. Shermer Recent Results in Art Galleries , 1992 .

[44]  Subir Kumar Ghosh,et al.  Approximation algorithms for art gallery problems in polygons , 2010, Discret. Appl. Math..

[45]  Giovanni Viglietta,et al.  The 3-dimensional searchlight scheduling problem , 2010, CCCG.

[46]  Jorge Urrutia,et al.  Illumination of Orthogonal Polygons with Orthogonal Floodlights , 1998, Int. J. Comput. Geom. Appl..

[47]  Bernard Chazelle,et al.  Convex Partitions of Polyhedra: A Lower Bound and Worst-Case Optimal Algorithm , 1984, SIAM J. Comput..

[48]  Erik D. Demaine,et al.  PSPACE-completeness of sliding-block puzzles and other problems through the nondeterministic constraint logic model of computation , 2002, Theor. Comput. Sci..

[49]  Steve Fisk,et al.  A short proof of Chvátal's Watchman Theorem , 1978, J. Comb. Theory, Ser. B.

[50]  A. Aggarwal The art gallery theorem: its variations, applications and algorithmic aspects , 1984 .

[51]  P. Valtr Guarding galleries where no point sees a small area , 1998 .

[52]  David G. Kirkpatrick,et al.  Improved Approximation for Guarding Simple Galleries from the Perimeter , 2010, Discret. Comput. Geom..