Construction of Ptδ+–O(H)–Ti3+ Species for Efficient Catalytic Production of Hydrogen

[1]  Xi-wen Song,et al.  On the Role of Hydroxyl Groups on Cu/Al2O3 in CO2 Hydrogenation , 2022, ACS Catalysis.

[2]  Dequan Xiao,et al.  Author Correction: Ensemble effect for single-atom, small cluster and nanoparticle catalysts , 2022, Nature Catalysis.

[3]  F. Xiao,et al.  New routes for the construction of strong metal—support interactions , 2022, Science China Chemistry.

[4]  Fuzhen Xuan,et al.  Induced activation of the commercial Cu/ZnO/Al2O3 catalyst for the steam reforming of methanol , 2022, Nature Catalysis.

[5]  Wei‐Xue Li,et al.  Sabatier principle of metal-support interaction for design of ultrastable metal nanocatalysts , 2021, Science.

[6]  Wei Xu,et al.  Encapsulation of Platinum by Titania under an Oxidative Atmosphere: Contrary to Classical Strong Metal–Support Interactions , 2021 .

[7]  F. Xiao,et al.  Strong metal–support interactions on gold nanoparticle catalysts achieved through Le Chatelier’s principle , 2021, Nature Catalysis.

[8]  Justin M. Notestein,et al.  Tandem In2O3-Pt/Al2O3 catalyst for coupling of propane dehydrogenation to selective H2 combustion , 2021, Science.

[9]  Jin-Xun Liu,et al.  Atomically dispersed Ir/α-MoC catalyst with high metal loading and thermal stability for water-promoted hydrogenation reaction , 2021, National science review.

[10]  Jin-an Shi,et al.  A stable low-temperature H2-production catalyst by crowding Pt on α-MoC , 2021, Nature.

[11]  Lili Lin,et al.  Atomically Dispersed Ni/α-MoC Catalyst for Hydrogen Production from Methanol/Water. , 2020, Journal of the American Chemical Society.

[12]  Jun Luo,et al.  Inverse ZrO2/Cu as a highly efficient methanol synthesis catalyst from CO2 hydrogenation , 2020, Nature Communications.

[13]  T. Lunkenbein,et al.  Synergy between Metallic and Oxidized Pt Sites Unravelled during Room Temperature CO Oxidation on Pt/Ceria. , 2020, Angewandte Chemie.

[14]  Hope O. Otor,et al.  Encapsulation Methods for Control of Catalyst Deactivation: A Review , 2020 .

[15]  Yuhan Sun,et al.  Low-temperature hydrogen production from methanol steam reforming on Zn-modified Pt/MoC catalysts , 2020 .

[16]  Jun Luo,et al.  Strong Metal-Support Interactions between Pt Single Atoms and TiO2. , 2020, Angewandte Chemie.

[17]  Ze Zhang,et al.  Visualizing H2O molecules reacting at TiO2 active sites with transmission electron microscopy , 2020, Science.

[18]  K. D. de Jong,et al.  Control of metal-support interactions in heterogeneous catalysts to enhance activity and selectivity , 2019, Nature Catalysis.

[19]  M. Allendorf,et al.  Efficient Hydrogen Production from Methanol Using A Single-Site Pt1/CeO2 Catalyst. , 2019, Journal of the American Chemical Society.

[20]  Dequan Xiao,et al.  Anchoring Cu1 species over nanodiamond-graphene for semi-hydrogenation of acetylene , 2019, Nature Communications.

[21]  Thomas J. Schwartz,et al.  Frequencies and Thermal Stability of Isolated Surface Hydroxyls on Pyrogenic TiO2 Nanoparticles , 2019, The Journal of Physical Chemistry C.

[22]  Xiao-hui Liu,et al.  NiAl2O4 Spinel Supported Pt Catalyst: High Performance and Origin in Aqueous-Phase Reforming of Methanol , 2019, ACS Catalysis.

[23]  R. Schlögl,et al.  Strong Metal-Support Interactions between Copper and Iron Oxide during the High-Temperature Water-Gas Shift Reaction. , 2019, Angewandte Chemie.

[24]  Jing Ning,et al.  Structure of the catalytically active copper–ceria interfacial perimeter , 2019, Nature Catalysis.

[25]  Ligang Wang,et al.  Identifying Reaction Species by Evolutionary Fitting and Kinetic Analysis: An Example of CO2 Hydrogenation in DRIFTS , 2019, The Journal of Physical Chemistry C.

[26]  Chun-Hua Yan,et al.  Direct Identification of Active Surface Species for the Water-Gas Shift Reaction on a Gold-Ceria Catalyst. , 2019, Journal of the American Chemical Society.

[27]  Wenlong Wang,et al.  Auδ−–Ov–Ti3+ Interfacial Site: Catalytic Active Center toward Low-Temperature Water Gas Shift Reaction , 2019, ACS Catalysis.

[28]  D. Su,et al.  Wet-Chemistry Strong Metal-Support Interactions in Titania-Supported Au Catalysts. , 2019, Journal of the American Chemical Society.

[29]  Jinlong Yang,et al.  Atomically dispersed iron hydroxide anchored on Pt for preferential oxidation of CO in H2 , 2019, Nature.

[30]  Direct In Situ TEM Visualization and Insight into the Facet-Dependent Sintering Behaviors of Gold on TiO2. , 2018, Angewandte Chemie.

[31]  A. Datye,et al.  Design of Effective Catalysts for Selective Alkyne Hydrogenation by Doping of Ceria with a Single-Atom Promotor. , 2018, Journal of the American Chemical Society.

[32]  L. Gu,et al.  Interfacing with silica boosts the catalysis of copper , 2018, Nature Communications.

[33]  Ding Ma,et al.  Insights into Interfacial Synergistic Catalysis over Ni@TiO2- x Catalyst toward Water-Gas Shift Reaction. , 2018, Journal of the American Chemical Society.

[34]  Xiaodong Wang,et al.  Identifying Size Effects of Pt as Single Atoms and Nanoparticles Supported on FeOx for the Water-Gas Shift Reaction , 2018 .

[35]  K. Wilson,et al.  Classical strong metal–support interactions between gold nanoparticles and titanium dioxide , 2017, Science Advances.

[36]  Jay A. Schwalbe,et al.  Mechanistic Understanding and the Rational Design of Sinter-Resistant Heterogeneous Catalysts , 2017 .

[37]  L. Gu,et al.  Atomic-layered Au clusters on α-MoC as catalysts for the low-temperature water-gas shift reaction , 2017, Science.

[38]  M. Kohyama,et al.  Reaction Mechanism of the Low-Temperature Water–Gas Shift Reaction on Au/TiO2 Catalysts , 2017 .

[39]  Lili Lin,et al.  Low-temperature hydrogen production from water and methanol using Pt/α-MoC catalysts , 2017, Nature.

[40]  Pengxin Liu,et al.  Surface Coordination Chemistry of Metal Nanomaterials. , 2017, Journal of the American Chemical Society.

[41]  S. C. Ammal,et al.  Water-Gas Shift Activity of Atomically Dispersed Cationic Platinum versus Metallic Platinum Clusters on Titania Supports , 2017 .

[42]  J. VandeVondele,et al.  Catalyst support effects on hydrogen spillover , 2017, Nature.

[43]  J. Grunwaldt,et al.  Interplay of Pt and Crystal Facets of TiO2: CO Oxidation Activity and Operando XAS/DRIFTS Studies , 2016 .

[44]  Weiguo Song,et al.  Strong Local Coordination Structure Effects on Subnanometer PtOx Clusters over CeO2 Nanowires Probed by Low-Temperature CO Oxidation , 2015 .

[45]  M. Mavrikakis,et al.  Catalytically active Au-O(OH)x- species stabilized by alkali ions on zeolites and mesoporous oxides , 2014, Science.

[46]  S. C. Ammal,et al.  Water–Gas Shift Catalysis at Corner Atoms of Pt Clusters in Contact with a TiO2 (110) Support Surface , 2014 .

[47]  Ping Liu,et al.  Highly active copper-ceria and copper-ceria-titania catalysts for methanol synthesis from CO2 , 2014, Science.

[48]  Chih-Wen Pao,et al.  Interfacial Effects in Iron-Nickel Hydroxide–Platinum Nanoparticles Enhance Catalytic Oxidation , 2014, Science.

[49]  Christopher B. Murray,et al.  Control of Metal Nanocrystal Size Reveals Metal-Support Interface Role for Ceria Catalysts , 2013, Science.

[50]  R. Rousseau,et al.  The role of reducible oxide-metal cluster charge transfer in catalytic processes: new insights on the catalytic mechanism of CO oxidation on Au/TiO2 from ab initio molecular dynamics. , 2013, Journal of the American Chemical Society.

[51]  M. Beller,et al.  Low-temperature aqueous-phase methanol dehydrogenation to hydrogen and carbon dioxide , 2013, Nature.

[52]  Ping Liu,et al.  A new type of strong metal-support interaction and the production of H2 through the transformation of water on Pt/CeO2(111) and Pt/CeO(x)/TiO2(110) catalysts. , 2012, Journal of the American Chemical Society.

[53]  Matthew Neurock,et al.  Spectroscopic Observation of Dual Catalytic Sites During Oxidation of CO on a Au/TiO2 Catalyst , 2011, Science.

[54]  Manos Mavrikakis,et al.  Alkali-Stabilized Pt-OHx Species Catalyze Low-Temperature Water-Gas Shift Reactions , 2010, Science.

[55]  Qiang Fu,et al.  Interface-Confined Ferrous Centers for Catalytic Oxidation , 2010, Science.

[56]  A. Corma,et al.  Transforming nonselective into chemoselective metal catalysts for the hydrogenation of substituted nitroaromatics. , 2008, Journal of the American Chemical Society.

[57]  Manos Mavrikakis,et al.  On the mechanism of low-temperature water gas shift reaction on copper. , 2008, Journal of the American Chemical Society.

[58]  J. Hrbek,et al.  Activity of CeOx and TiOx Nanoparticles Grown on Au(111) in the Water-Gas Shift Reaction , 2007, Science.

[59]  Robert A Dagle,et al.  Methanol steam reforming for hydrogen production. , 2007, Chemical reviews.

[60]  M. Flytzani-Stephanopoulos,et al.  Active Nonmetallic Au and Pt Species on Ceria-Based Water-Gas Shift Catalysts , 2003, Science.

[61]  B. Delley From molecules to solids with the DMol3 approach , 2000 .

[62]  Michael R. Hoffmann,et al.  Infrared Spectra of Photoinduced Species on Hydroxylated Titania Surfaces , 2000 .

[63]  S. C. Fung,et al.  Strong interactions in supported-metal catalysts. , 1981, Science.

[64]  S. C. Fung,et al.  Strong metal-support interactions. Group 8 noble metals supported on titanium dioxide , 1978 .