Influence of uncertainties of the empirical models for inferring the E-region electric fields at the dip equator

[1]  C. Denardini,et al.  E region electric field dependence of the solar activity , 2015 .

[2]  Eng Leong Tan,et al.  Impacts of solar activity on performance of the IRI-2012 model predictions from low to mid latitudes , 2015, Earth, Planets and Space.

[3]  Eng Leong Tan,et al.  Validation of the IRI-2012 model with GPS-based ground observation over a low-latitude Singapore station , 2014, Earth, Planets and Space.

[4]  V. Bruevich,et al.  Changed Relation between Solar 10.7-cm Radio Flux and some Activity Indices which describe the Radiation at Different Altitudes of Atmosphere during Cycles 21–23 , 2014 .

[5]  C. Denardini,et al.  E region electric fields at the dip equator and anomalous conductivity effects , 2013 .

[6]  Y. Kuo,et al.  Validate the IRI2007 model by the COSMIC slant TEC data during the extremely solar minimum of 2008 , 2013 .

[7]  P. Fagundes,et al.  Equatorial F2-layer variations: Comparison between F2 peak parameters at Ouagadougou with the IRI-2007 model , 2012, Earth, Planets and Space.

[8]  C. Denardini,et al.  Daytime efficiency and characteristic time scale of interplanetary electric fields penetration to equatorial latitude ionosphere , 2011 .

[9]  T. Maruyama,et al.  Comparison of GPS TEC measurements with IRI TEC prediction at the equatorial latitude station, Chumphon, Thailand , 2011 .

[10]  Y. Kwak,et al.  Mass density of the upper atmosphere derived from Starlette’s Precise Orbit Determination with Satellite Laser Ranging , 2011 .

[11]  H. Lühr,et al.  IRI‐2007 model overestimates electron density during the 23/24 solar minimum , 2010 .

[12]  A. Chulliat,et al.  International Geomagnetic Reference Field: the eleventh generation , 2010 .

[13]  P. Alken,et al.  Electric fields in the equatorial ionosphere derived from CHAMP satellite magnetic field measurements , 2010 .

[14]  C. Denardini,et al.  Climatology of gravity waves-induced electric fields in the equatorial E region , 2009 .

[15]  C. Denardini,et al.  Counter electrojet features in the Brazilian sector: simultaneous observation by radar, digital sounder and magnetometers , 2009 .

[16]  C. Denardini,et al.  Signatures of 2-day wave in the E-region electric fields and their relationship to winds and ionospheric currents , 2009 .

[17]  D. Bilitza,et al.  International Reference Ionosphere 2007: Improvements and new parameters , 2008 .

[18]  Y. Moon,et al.  Comparison between the KOMPSAT-1 drag derived density and the MSISE model density during strong solar and/or geomagnetic activities , 2008 .

[19]  Bela G. Fejer,et al.  Quiet time equatorial F region vertical plasma drift model derived from ROCSAT‐1 observations , 2008 .

[20]  W. J. Burke,et al.  Interplanetary control of thermospheric densities during large magnetic storms , 2007 .

[21]  Robert W. Schunk,et al.  Utah State University Global Assimilation of Ionospheric Measurements Gauss‐Markov Kalman filter model of the ionosphere: Model description and validation , 2006 .

[22]  P. Fagundes,et al.  IRI-2001 model predictions compared with ionospheric data observed at Brazilian low latitude stations , 2006 .

[23]  C. Denardini,et al.  VHF radar observations of the dip equatorial E-region during sunset in the Brazilian sector , 2006 .

[24]  C. Denardini,et al.  Seasonal characterization of the equatorial electrojet height rise over Brazil as observed by the RESCO 50 MHz back-scatter radar , 2005 .

[25]  Timothy Fuller-Rowell,et al.  Interaction between direct penetration and disturbance dynamo electric fields in the storm‐time equatorial ionosphere , 2005 .

[26]  Hermann Lühr,et al.  Global distribution of the thermospheric total mass density derived from CHAMP , 2004 .

[27]  C. Denardini,et al.  VHF radar studies of the equatorial electrojet 3-m irregularities over São Luís: day-to-day variabilities under auroral activity and quiet conditions , 2004 .

[28]  N. Olsen,et al.  A more realistic estimate of the variances and systematic errors in spherical harmonic geomagnetic field models , 2004 .

[29]  D. Drob,et al.  Nrlmsise-00 Empirical Model of the Atmosphere: Statistical Comparisons and Scientific Issues , 2002 .

[30]  P. Richards,et al.  Ion and neutral density variations during ionospheric storms in September 1974: Comparison of measurement and models , 2002 .

[31]  E. R. Paula,et al.  Equatorial electrojet irregularities investigations using a back-scatter radar and a digisonde at São Luı́s: some initial results , 2002 .

[32]  F. Lowes,et al.  An estimate of the errors of the IGRF/DGRF fields 1945–2000 , 2000 .

[33]  Robert W. Schunk,et al.  Ionospheres : physics, plasma physics, and chemistry , 2000 .

[34]  D. Hysell,et al.  Ionospheric electric field estimates from radar observations of the equatorial electrojet , 2000 .

[35]  Junhu Du,et al.  Simulating the ionospheric dynamo—I. Simulation model and flux tube integrated conductivities , 1999 .

[36]  Ludger Scherliess,et al.  Empirical models of storm time equatorial zonal electric fields , 1997 .

[37]  G. J. Bailey,et al.  The Sheffield University plasmasphere ionosphere model--a review , 1997 .

[38]  B. Fejer The electrodynamics of the low-latitude ionosphere: Recent results and future challenges , 1997 .

[39]  T. N. Chatterjee,et al.  Relation between solar UV flux and 10.7-cm radio emission , 1995 .

[40]  Arthur D. Richmond,et al.  Low-latitude plasma drifts from a simulation of the global atmospheric dynamo , 1993 .

[41]  C. Reddy The equatorial electrojet , 1989 .

[42]  A. Singh,et al.  A numerical model of the ionospheric dynamo—II. Electrostatic field at equatorial and low latitudes , 1987 .

[43]  K. Viswanathan,et al.  Electric fields and currents in the equatorial electrojet deduced from VHF radar observations—I. A method of estimating electric fields , 1987 .

[44]  J. Forbes The equatorial electrojet , 1981 .

[45]  C. Reddy The equatorial electrojet: a review of the ionospheric and geomagnetic aspects , 1981 .

[46]  B. Fejer,et al.  Correction [to “Ionospheric irregularities”] , 1981 .

[47]  A. Richmond Equatorial electrojet-I. Development of a model including winds and instabilities , 1973 .

[48]  R. Cohen Phase velocities of irregularities in the equatorial electrojet , 1973 .

[49]  S. Chapman The electrical conductivity of the ionosphere: A review , 1956 .

[50]  Michael Charles Kelly,et al.  The Earth's Ionosphere: Plasma Physics and Electrodynamics, Second Edition , 2009 .

[51]  C. Denardini A conductivity model for the Brazilian equatorial e-region: initial results , 2007 .

[52]  B. Reinisch,et al.  Equatorial F-layer heights, evening prereversal electric field, and night E-layer density in the American sector: IRI validation with observations , 2004 .

[53]  N. Sethi,et al.  Diurnal and seasonal variations of hm F2 deduced from digitalionosonde over New Delhi and its comparison with IRI 2001 , 2004 .

[54]  I. Batista,et al.  Comparison of low latitude F region peak densities, heights and equatorial E×B drift from IRI with observational data and the Sheffield University plasmasphere ionosphere model , 2003 .

[55]  I. Batista,et al.  Comparison between IRI predictions and digisonde measurements at low latitude station , 1996 .

[56]  I. Batista,et al.  An overview of IRI-observational data comparison in American (Brazilian) sector low latitude ionosphere , 1996 .

[57]  I. J. Kantor,et al.  Rocket-borne measurements of equatorial ionospheric electron densities and their comparison with IRI-10 predictions , 1990 .

[58]  R. Woodman East-west ionospheric drifts at the magnetic equator. , 1972 .