Coaxial Cu-Si@C array electrodes for high-performance lithium ion batteries.

A new concept for fabricating novel triple-layered nanorod array electrodes made of coaxial Cu-Si@C arrays has been developed. They exhibit excellent electrochemical performance resulting from peculiar new sandwiched architectures: robust Cu nanopillar cores/amorphous Si layers/elastic carbon shells.

[1]  Li-Jun Wan,et al.  Cu‐Si Nanocable Arrays as High‐Rate Anode Materials for Lithium‐Ion Batteries , 2011, Advanced materials.

[2]  Haixia Li,et al.  Preparation and electrochemical performance of copper foam-supported amorphous silicon thin films for rechargeable lithium-ion batteries , 2011 .

[3]  Ran Liu,et al.  Heterogeneous nanostructured electrode materials for electrochemical energy storage. , 2011, Chemical communications.

[4]  Jian Jiang,et al.  Building one-dimensional oxide nanostructure arrays on conductive metal substrates for lithium-ion battery anodes. , 2011, Nanoscale.

[5]  Lin Xu,et al.  Single nanowire electrochemical devices. , 2010, Nano letters.

[6]  Ping He,et al.  Nano active materials for lithium-ion batteries. , 2010, Nanoscale.

[7]  Yanfa Yan,et al.  Conformal surface coatings to enable high volume expansion Li-ion anode materials. , 2010, Chemphyschem : a European journal of chemical physics and physical chemistry.

[8]  G. Yushin,et al.  Deformations in Si-Li anodes upon electrochemical alloying in nano-confined space. , 2010, Journal of the American Chemical Society.

[9]  J. Rogers,et al.  Arrays of sealed silicon nanotubes as anodes for lithium ion batteries. , 2010, Nano letters.

[10]  G. Yushin,et al.  High-performance lithium-ion anodes using a hierarchical bottom-up approach. , 2010, Nature materials.

[11]  Min Gyu Kim,et al.  Silicon nanotube battery anodes. , 2009, Nano letters.

[12]  Yi Cui,et al.  Carbon-silicon core-shell nanowires as high capacity electrode for lithium ion batteries. , 2009, Nano letters.

[13]  Jian Jiang,et al.  Carbon/ZnO Nanorod Array Electrode with Significantly Improved Lithium Storage Capability. , 2009 .

[14]  Arava Leela Mohana Reddy,et al.  Coaxial MnO2/carbon nanotube array electrodes for high-performance lithium batteries. , 2009, Nano letters.

[15]  Jaephil Cho,et al.  Three-dimensional porous silicon particles for use in high-performance lithium secondary batteries. , 2008, Angewandte Chemie.

[16]  Jin-Song Hu,et al.  Nanostructured Materials for Electrochemical Energy Conversion and Storage Devices , 2008 .

[17]  Yuichi Sato,et al.  Preparation and electrochemical characteristics of LiNi1/3Mn1/3Co1/3O2 coated with metal oxides coating , 2006 .

[18]  J. Tarascon,et al.  High rate capabilities Fe3O4-based Cu nano-architectured electrodes for lithium-ion battery applications , 2006, Nature materials.

[19]  Seung‐Taek Myung,et al.  Role of Alumina Coating on Li−Ni−Co−Mn−O Particles as Positive Electrode Material for Lithium-Ion Batteries , 2005 .

[20]  Mark N. Obrovac,et al.  Structural changes in silicon anodes during lithium insertion/extraction , 2004 .

[21]  Jong-Wan Park,et al.  Electrochemical characteristics of Al2O3-coated lithium manganese spinel as a cathode material for a lithium secondary battery , 2004 .

[22]  B. Jung,et al.  Effects of metal oxide coatings on the thermal stability and electrical performance of LiCoCO2 in a Li-ion cell , 2004 .

[23]  Jaephil Cho,et al.  Zero-Strain Intercalation Cathode for Rechargeable Li-Ion Cell , 2001 .

[24]  Yong Liang,et al.  A High Capacity Nano ­ Si Composite Anode Material for Lithium Rechargeable Batteries , 1999 .

[25]  Candace K. Chan,et al.  Crystalline-amorphous core-shell silicon nanowires for high capacity and high current battery electrodes. , 2009, Nano letters.

[26]  Candace K. Chan,et al.  High-performance lithium battery anodes using silicon nanowires. , 2008, Nature nanotechnology.