Functions as processes: termination and the λµµ-calculus

The λµµ-calculus is a variant of the λ-calculus with significant differences, including non-confluence and a Curry-Howard isomorphism with the classical sequent calculus. We present an encoding of the λµµ-calculus into the π-calculus. We establish the operational correctness of the encoding, and then we extract from it an abstract machine for the λµµ-calculus. We prove that there is a tight relationship between such a machine and Curien and Herbelin's abstract machine for the λµµ-calculus. The π-calculus image of the (typed) λµµ-calculus is a nontrivial set of terminating processes.

[1]  Henk Barendregt,et al.  The Lambda Calculus: Its Syntax and Semantics , 1985 .

[2]  D. Walker,et al.  A Calculus of Mobile Processes, Part I , 1989 .

[3]  J. Girard,et al.  Proofs and types , 1989 .

[4]  Mario Tokoro,et al.  An Object Calculus for Asynchronous Communication , 1991, ECOOP.

[5]  Michel Parigot,et al.  Lambda-Mu-Calculus: An Algorithmic Interpretation of Classical Natural Deduction , 1992, LPAR.

[6]  Robin Milner,et al.  A Calculus of Mobile Processes, II , 1992, Inf. Comput..

[7]  Gérard Boudol,et al.  Asynchrony and the Pi-calculus , 1992 .

[8]  Robin Milner,et al.  A Calculus of Mobile Processes, II , 1992, Inf. Comput..

[9]  Robin Milner,et al.  Functions as processes , 1990, Mathematical Structures in Computer Science.

[10]  Hugo Herbelin,et al.  A Lambda-Calculus Structure Isomorphic to Gentzen-Style Sequent Calculus Structure , 1994, CSL.

[11]  Davide Sangiorgi Internal Mobility and Agent-Passing Calculi , 1995, ICALP.

[12]  Davide Sangiorgi From lambda to pi; or, Rediscovering continuations , 1999, Math. Struct. Comput. Sci..

[13]  Davide Sangiorgi,et al.  From λ to π; or, Rediscovering continuations , 1999, Mathematical Structures in Computer Science.

[14]  Hugo Herbelin,et al.  The duality of computation , 2000, ICFP '00.

[15]  Nobuko Yoshida,et al.  Strong normalisation in the /spl pi/-calculus , 2001, Proceedings 16th Annual IEEE Symposium on Logic in Computer Science.

[16]  Davide Sangiorgi,et al.  The Pi-Calculus - a theory of mobile processes , 2001 .

[17]  Vasco Thudichum Vasconcelos Lambda and pi calculi, CAM and SECD machines , 2005, J. Funct. Program..

[18]  Davide Sangiorgi,et al.  Ensuring termination by typability , 2006, Inf. Comput..

[19]  Davide Sangiorgi,et al.  Termination of processes , 2006, Mathematical Structures in Computer Science.

[20]  M. Sørensen,et al.  Lectures on the Curry-Howard Isomorphism, Volume 149 (Studies in Logic and the Foundations of Mathematics) , 2006 .

[21]  Leeat Yariv Online Appendix , 2008 .

[22]  Raheel Ahmad,et al.  The π-Calculus: A theory of mobile processes , 2008, Scalable Comput. Pract. Exp..

[23]  Davide Sangiorgi,et al.  Mobile Processes and Termination , 2009, Semantics and Algebraic Specification.

[24]  L. Cardelli,et al.  From X to Pi; Representing the Classical Sequent Calculus in the Pi-calculus , 2011, ArXiv.