Relativistic entropy and related Boltzmann kinetics

It is well known that the particular form of the two-particle correlation function, in the collisional integral of the classical Boltzmman equation, fixes univocally the entropy of the system, which turns out to be the Boltzmann-Gibbs-Shannon entropy. In the ordinary relativistic Boltzmann equation, some standard generalizations, with respect to its classical version, imposed by the special relativity, are customarily performed. The only ingredient of the equation, which tacitly remains in its original classical form, is the two-particle correlation function, and this fact imposes that also the relativistic kinetics is governed by the Boltzmann-Gibbs-Shannon entropy. Indeed the ordinary relativistic Boltzmann equation admits as stationary stable distribution, the exponential Juttner distribution. Here, we show that the special relativity laws and the maximum entropy principle suggest a relativistic generalization also of the two-particle correlation function and then of the entropy. The so obtained, fully relativistic Boltzmann equation, obeys the H-theorem and predicts a stationary stable distribution, presenting power law tails in the high-energy region. The ensued relativistic kinetic theory preserves the main features of the classical kinetics, which recovers in the c$ \rightarrow$ ∞ limit.

[1]  G. Kaniadakis,et al.  Non-linear kinetics underlying generalized statistics , 2001 .

[2]  Denis Bolduc,et al.  The K-deformed multinomial logit model , 2005 .

[3]  A. M. Scarfone,et al.  Generalized kinetic equations for a system of interacting atoms and photons: theory and simulations , 2004 .

[4]  A. Olemskoi,et al.  Multifractal spectrum of phase space related to generalized thermostatistics , 2006, cond-mat/0602545.

[5]  Włodarczyk,et al.  Fluctuations of cross sections seen in cosmic ray data? , 1994, Physical review. D, Particles and fields.

[6]  G. Kaniadakis H-theorem and generalized entropies within the framework of nonlinear kinetics , 2001 .

[7]  Jiulin Du,et al.  The κ parameter and κ-distribution in κ-deformed statistics for the systems in an external field , 2006, cond-mat/0610606.

[8]  J. C. Carvalho,et al.  NON-GAUSSIAN STATISTICS AND STELLAR ROTATIONAL VELOCITIES OF MAIN-SEQUENCE FIELD STARS , 2009, 0903.0868.

[9]  S. R. de Groot,et al.  Relativistic kinetic theory , 1974 .

[10]  Giorgio Kaniadakis,et al.  κ-generalized statistics in personal income distribution , 2007 .

[11]  Canonical partition function for anomalous systems described by the $\kappa$-entropy , 2005, cond-mat/0509364.

[12]  Hasegawa,et al.  Plasma distribution function in a superthermal radiation field. , 1985, Physical review letters.

[13]  R. Silva The relativistic statistical theory and Kaniadakis entropy: an approach through a molecular chaos hypothesis , 2006 .

[14]  V. Vasyliūnas,et al.  A survey of low-energy electrons in the evening sector of the magnetosphere with OGO 1 and OGO 3. , 1968 .

[15]  Walton,et al.  Equilibrium distribution of heavy quarks in fokker-planck dynamics , 2000, Physical review letters.

[16]  Tatsuaki Wada,et al.  A two-parameter generalization of Shannon-Khinchin axioms and the uniqueness theorem , 2007 .

[17]  Generalized entropy optimized by a given arbitrary distribution , 2002, cond-mat/0211437.

[18]  A. Lavagno,et al.  Kinetic model for q-deformed bosons and fermions , 1997, hep-th/9701114.

[19]  Tatsuaki Wada Thermodynamic stability conditions for nonadditive composable entropies , 2004 .

[20]  R. Silva,et al.  Conservative Force Fields in Non-Gaussian Statistics , 2008, 0807.3382.

[21]  J. Naudts CONTINUITY OF A CLASS OF ENTROPIES AND RELATIVE ENTROPIES , 2002, math-ph/0208038.

[22]  Roberto Tonelli,et al.  Statistical descriptions of nonlinear systems at the onset of chaos , 2006 .

[23]  Generalized thermodynamics and kinetic equations: Boltzmann, Landau, Kramers and Smoluchowski , 2003, cond-mat/0304073.

[24]  Tatsuaki Wada,et al.  Canonical Partition Function for Anomalous Systems Described by the κ-Entropy(COMPLEXITY AND NONEXTENSIVITY:NEW TRENDS IN STATISTICAL MECHANICS) , 2006 .

[25]  H. G. Miller,et al.  κ-DEFORMED STATISTICS AND THE FORMATION OF A QUARK-GLUON PLASMA , 2003 .

[26]  Giorgio Kaniadakis,et al.  Computer experiments on the relaxation of collisionless plasmas , 2009 .

[27]  R. Silva,et al.  The H-theorem in κ-statistics : influence on the molecular chaos hypothesis , 2006 .

[28]  J. C. Carvalho,et al.  Power law statistics and stellar rotational velocities in the Pleiades , 2008, 0903.0836.

[29]  Till D. Frank Generalized multivariate Fokker–Planck equations derived from kinetic transport theory and linear nonequilibrium thermodynamics , 2002 .

[30]  A. Lavagno,et al.  Kinetic approach to fractional exclusion statistics , 1995, hep-th/9507119.

[31]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[32]  Ugur Tirnakli,et al.  Sensitivity function and entropy increase rates for z-logistic map family at the edge of chaos , 2006 .

[33]  G. Kaniadakis,et al.  Maximum entropy principle and power-law tailed distributions , 2009, 0904.4180.

[34]  E. Curado,et al.  A general nonlinear Fokker-Planck equation and its associated entropy , 2007, 0704.0465.

[35]  Sumiyoshi Abe,et al.  Stabilities of generalized entropies , 2004 .

[36]  J. Naudts Deformed exponentials and logarithms in generalized thermostatistics , 2002, cond-mat/0203489.

[37]  Giorgio Kaniadakis,et al.  The κ-generalized distribution: A new descriptive model for the size distribution of incomes , 2007, 0710.3645.

[38]  Giorgio Kaniadakis,et al.  Relaxation of Relativistic Plasmas Under the Effect of Wave-Particle Interactions , 2007 .

[39]  Remo Guidieri Res , 1995, RES: Anthropology and Aesthetics.

[40]  A. Y. Abul-Magd Nonextensive random-matrix theory based on Kaniadakis entropy , 2007 .

[41]  Tatsuaki Wada,et al.  Thermodynamic stabilities of the generalized Boltzmann entropies , 2004 .

[42]  P. Quarati,et al.  A set of stationary non-Maxwellian distributions , 1993 .

[43]  Zhipeng Liu,et al.  The property of κ-deformed statistics for a relativistic gas in an electromagnetic field: κ parameter and κ-distribution , 2007 .

[44]  Dominique Rajaonarison,et al.  Deterministic heterogeneity in tastes and product differentiation in the K-logit model , 2008 .

[45]  T. Wada,et al.  κ-generalization of Gauss' law of error , 2006 .

[46]  T.S.Biro,et al.  Two generalizations of the Boltzmann equation , 2005 .

[47]  G. Kaniadakis,et al.  Statistical mechanics in the context of special relativity. II. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[48]  P. Quarati,et al.  Polynomial expansion of diffusion and drift coefficients for classical and quantum statistics , 1997 .

[49]  F. Topsøe Entropy and equilibrium via games of complexity , 2004 .

[50]  Interpretation of Lagrange multipliers of generalized maximum-entropy distributions , 2002 .

[51]  G. Kaniadakis,et al.  Statistical mechanics in the context of special relativity. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[52]  A. M. Scarfone,et al.  Lesche stability of κ-entropy , 2004 .

[53]  M. Lemoine,et al.  Physics and Astrophysics of Ultra High Energy Cosmic Rays , 2010 .