LaTeX 2 e guide for authors using the EngC design Subtitle , if you

[1]  Xin Yuan,et al.  Non-Gaussian Discriminative Factor Models via the Max-Margin Rank-Likelihood , 2015, ICML.

[2]  Xin Yuan,et al.  Bayesian Nonlinear Support Vector Machines and Discriminative Factor Modeling , 2014, NIPS.

[3]  A. Zaas,et al.  The current epidemiology and clinical decisions surrounding acute respiratory infections. , 2014, Trends in molecular medicine.

[4]  L. Coin,et al.  Diagnosis of childhood tuberculosis and host RNA expression in Africa. , 2014, The New England journal of medicine.

[5]  Zoubin Ghahramani,et al.  The Supervised IBP: Neighbourhood Preserving Infinite Latent Feature Models , 2013, UAI.

[6]  L. Carin,et al.  A Host Transcriptional Signature for Presymptomatic Detection of Infection in Humans Exposed to Influenza H1N1 or H3N2 , 2013, PloS one.

[7]  Chong Wang,et al.  Stochastic variational inference , 2012, J. Mach. Learn. Res..

[8]  Ricardo Henao,et al.  LATENT PROTEIN TREES , 2011, 1108.2471.

[9]  Lawrence Carin,et al.  Joint Modeling of a Matrix with Associated Text via Latent Binary Features , 2012, NIPS.

[10]  Lawrence Carin,et al.  Inferring Latent Structure From Mixed Real and Categorical Relational Data , 2012, ICML.

[11]  James G. Scott,et al.  Bayesian Inference for Logistic Models Using Pólya–Gamma Latent Variables , 2012, 1205.0310.

[12]  James G. Scott,et al.  Shrink Globally, Act Locally: Sparse Bayesian Regularization and Prediction , 2022 .

[13]  Alfred O. Hero,et al.  High-Dimensional Longitudinal Genomic Data: An analysis used for monitoring viral infections , 2012, IEEE Signal Processing Magazine.

[14]  David B. Dunson,et al.  Generalized Beta Mixtures of Gaussians , 2011, NIPS.

[15]  D. Dunson,et al.  Sparse Bayesian infinite factor models. , 2011, Biometrika.

[16]  Alfred O. Hero,et al.  Detection of Viruses Via Statistical Gene Expression Analysis , 2011, IEEE Transactions on Biomedical Engineering.

[17]  Nicholas G. Polson,et al.  Data augmentation for support vector machines , 2011 .

[18]  Ole Winther,et al.  Sparse Linear Identifiable Multivariate Modeling , 2010, J. Mach. Learn. Res..

[19]  Francis R. Bach,et al.  Online Learning for Latent Dirichlet Allocation , 2010, NIPS.

[20]  James G. Scott,et al.  Local shrinkage rules, Lévy processes and regularized regression , 2010, 1010.3390.

[21]  Alfred O. Hero,et al.  Bayesian inference of the number of factors in gene-expression analysis: application to human virus challenge studies , 2010, BMC Bioinformatics.

[22]  Chris Hans Bayesian lasso regression , 2009 .

[23]  L. Carin,et al.  Gene expression signatures diagnose influenza and other symptomatic respiratory viral infections in humans. , 2009, Cell host & microbe.

[24]  Lawrence Carin,et al.  Nonparametric factor analysis with beta process priors , 2009, ICML '09.

[25]  Lawrence Carin,et al.  Semi-Supervised Classification , 2004, Encyclopedia of Database Systems.

[26]  James G. Scott,et al.  Handling Sparsity via the Horseshoe , 2009, AISTATS.

[27]  M. West,et al.  A Bayesian Analysis Strategy for Cross-Study Translation of Gene Expression Biomarkers , 2009, Statistical applications in genetics and molecular biology.

[28]  David B. Dunson,et al.  Multitask Compressive Sensing , 2009, IEEE Transactions on Signal Processing.

[29]  Seungjin Choi,et al.  Independent Component Analysis , 2009, Handbook of Natural Computing.

[30]  M. West,et al.  High-Dimensional Sparse Factor Modeling: Applications in Gene Expression Genomics , 2008, Journal of the American Statistical Association.

[31]  Guillermo Sapiro,et al.  Supervised Dictionary Learning , 2008, NIPS.

[32]  G. Casella,et al.  The Bayesian Lasso , 2008 .

[33]  Brad T. Sherman,et al.  Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources , 2008, Nature Protocols.

[34]  Radford M. Neal Pattern Recognition and Machine Learning , 2007, Technometrics.

[35]  Lawrence Carin,et al.  Multi-Task Learning for Classification with Dirichlet Process Priors , 2007, J. Mach. Learn. Res..

[36]  J. Griffin,et al.  Bayesian adaptive lassos with non-convex penalization , 2007 .

[37]  Tom Fawcett,et al.  An introduction to ROC analysis , 2006, Pattern Recognit. Lett..

[38]  Thomas L. Griffiths,et al.  Infinite latent feature models and the Indian buffet process , 2005, NIPS.

[39]  Rafael A. Irizarry,et al.  A Model-Based Background Adjustment for Oligonucleotide Expression Arrays , 2004 .

[40]  Jason Weston,et al.  Gene Selection for Cancer Classification using Support Vector Machines , 2002, Machine Learning.

[41]  Michael A. West,et al.  BAYESIAN MODEL ASSESSMENT IN FACTOR ANALYSIS , 2004 .

[42]  Nando de Freitas,et al.  An Introduction to MCMC for Machine Learning , 2004, Machine Learning.

[43]  D. Edwards,et al.  Statistical Analysis of Gene Expression Microarray Data , 2003 .

[44]  Matthew J. Beal Variational algorithms for approximate Bayesian inference , 2003 .

[45]  Matthew West,et al.  Bayesian factor regression models in the''large p , 2003 .

[46]  S. Dudoit,et al.  Comparison of Discrimination Methods for the Classification of Tumors Using Gene Expression Data , 2002 .

[47]  Lancelot F. James,et al.  Gibbs Sampling Methods for Stick-Breaking Priors , 2001 .

[48]  George Eastman House,et al.  Sparse Bayesian Learning and the Relevan e Ve tor Ma hine , 2001 .

[49]  H. Sebastian Seung,et al.  Algorithms for Non-negative Matrix Factorization , 2000, NIPS.

[50]  J. Berger,et al.  Choice of hierarchical priors: admissibility in estimation of normal means , 1996 .

[51]  Y. Benjamini,et al.  Controlling the false discovery rate: a practical and powerful approach to multiple testing , 1995 .

[52]  S. Chib,et al.  Bayesian analysis of binary and polychotomous response data , 1993 .

[53]  I. Jolliffe Principal Component Analysis , 2005 .

[54]  Donald Geman,et al.  Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[55]  Calyampudi R. Rao,et al.  Characterization Problems in Mathematical Statistics , 1976 .

[56]  D. F. Andrews,et al.  Scale Mixtures of Normal Distributions , 1974 .

[57]  R. A. Leibler,et al.  On Information and Sufficiency , 1951 .