Quantum electronic properties of the Na/sub 3/Ga/sub 2/Li/sub 3/F/sub 12/:Cr/sup 3+/ laser

Few of the existing Cr/sup 3+/ vibronic lasers have achieved the slope efficiency and tuning range expected based on their known spectroscopic properties. To discover the cause of this behavior, the performance of chromium-doped gallium fluoride garnet, Na/sub 3/Ga/sub 2/Li/sub 3/F/sub 12/:Cr/sup 3+/, as a laser material has been investigated experimentally. The data reported include absorption and emission spectra, emission rates, quantum efficiency, laser wavelength tuning range, laser output slope efficiencies, and excited-state absorption spectra. Similar properties of the alexandrite laser material were studied for comparison. The results indicate that the performance of the gallium fluoride garnet laser is severely limited by Cr/sup 3+/ excited-state absorption (ESA). A model is presented to account for the unexpected nature of the ESA, which appears to be a common problem for all Cr/sup 3+/ vibronic lasers. Criteria are suggested for choosing Cr/sup 3+/ hosts for which the effects of ESA will be minimized. >

[1]  M. L. Shand,et al.  Excited‐state absorption in the pump region of alexandrite , 1981 .

[2]  D. Findlay,et al.  The measurement of internal losses in 4-level lasers , 1966 .

[3]  M. Sturge,et al.  Antiresonance in the Optical Spectra of Transition-Metal Ions in Crystals , 1970 .

[4]  K. Petermann,et al.  Laser Action in Cr-Doped Garnets and Tungstates , 1985 .

[5]  John A. Caird,et al.  Fluorescence quantum efficiency and optical heating efficiency in laser crystals and glasses by laser calorimetry , 1988 .

[6]  T. Kushida 7B4 - Absorption and emission properties of optically pumped ruby , 1966 .

[7]  P. Moulton Spectroscopic and laser characteristics of Ti:Al2O3 , 1986 .

[8]  John C. Walling,et al.  Tunable alexandrite lasers , 1980 .

[9]  K. Petermann,et al.  Spectroscopic and laser properties of Cr 3+ -doped Al 2 (WO 4 ) 3 and SC 2 (WO 4 ) 3 , 1987 .

[10]  G. Huber,et al.  Broadband emission and laser action of Cr 3+ doped zinc tungstate at 1 µm wavelength , 1985 .

[11]  T. Maiman Stimulated Optical Radiation in Ruby , 1960, Nature.

[12]  John A. Caird,et al.  Spectroscopic, optical, and thermomechanical properties of neodymium- and chromium-doped gadolinium scandium gallium garnet , 1986 .

[13]  G. Huber,et al.  Tunable room-temperature cw laser action in Cr3+: GdScAl-garnet , 1984 .

[14]  M. Dutoit,et al.  Physical properties of BeAl2O4 single crystals , 1979 .

[15]  B. Chai,et al.  ScBO 3 :Cr--A room temperature near-infrared tunable laser , 1986 .

[16]  L. Andrews Excited-State Absorption and Photoconductivity of GSGG:Cr and GSAG:Cr , 1986 .

[17]  U. Brauch,et al.  KZnF3:Cr3+ — A tunable solid state NIR-laser , 1984 .

[18]  A. Schawlow,et al.  Excited-state absorption in ruby, emerald, and MgO: Cr 3 + , 1975 .

[19]  M. Shand Quantum efficiency of alexandrite , 1983 .

[20]  H. Jenssen,et al.  Tunable-laser performance in BeAl(2)O(4):Cr(3+). , 1979, Optics letters.

[21]  T. Kushida,et al.  Absorption Spectrum of Optically Pumped Ruby. II. Theoretical Analyses , 1966 .

[22]  L. Andrews,et al.  Spectroscopy and photokinetics of chromium (III) in glass , 1981 .

[23]  W. Krupke,et al.  Optical properties of Cr3+ in fluorite‐structure hosts and in MgF*2 , 1987 .

[24]  M. Shand,et al.  Excited-state absorption in the lasing wavelength region of alexandrite , 1982 .

[25]  Powell,et al.  Spectroscopic properties of alexandrite crystals. , 1985, Physical review. B, Condensed matter.

[26]  L. Andrews,et al.  Excited state absorption of Cr3+ in K2NaScF6 and Gd3Ga2(MO4)3, M=Ga, Al , 1986 .

[27]  Andrews,et al.  Thermal quenching of chromium photoluminescence in ordered perovskites. II. Theoretical models. , 1986, Physical review. B, Condensed matter.

[28]  S. Lai Highly efficient emerald laser , 1987, International Laser Science Conference.

[29]  M. Shand,et al.  Temperature dependence of gain in cw alexandrite laser , 1985 .

[30]  H. Jenssen,et al.  Temperature dependence of the excited- state absorption of alexandrite , 1983 .

[31]  C. K. Asawa,et al.  Stimulated Optical Emission in Fluorescent Solids. II. Spectroscopy and Stimulated Emission in Ruby , 1961 .

[32]  F. Ham Dynamical Jahn-Teller Effect in Paramagnetic Resonance Spectra: Orbital Reduction Factors and Partial Quenching of Spin-Orbit Interaction , 1965 .

[33]  Y. Takeda,et al.  SYNTHESIS OF THE FLUORIDE GARNETS {Na3}[M23+](Li3)F12 (M=Al, Cr, Fe) , 1975 .

[34]  R. Morris,et al.  Tunable CW alexandrite laser , 1980 .

[35]  W. Krupke,et al.  Room temperature SrAlF/sub 5/:Cr/sup 3 +/ laser emission tunable from 825 nm to 1010 nm , 1986 .

[36]  G. Huber,et al.  Tunable room-temperature cw laser action in Cr3+: GdScGa-Garnet , 1983 .

[37]  Andrews,et al.  Thermal quenching of chromium photoluminescence in ordered perovskites. I. Temperature dependence of spectra and lifetimes. , 1986, Physical review. B, Condensed matter.

[38]  Malozemoff Heisenberg-to-Ising crossover in a random-field model with uniaxial anisotropy. , 1988, Physical review. B, Condensed matter.

[39]  M. Shand,et al.  High efficiency cw laser‐pumped tunable alexandrite laser , 1983 .

[40]  C. Struck,et al.  Transition rates in single-ħω models , 1979 .

[41]  P. Moulton,et al.  An investigation of the Co:MgF2laser system , 1985, IEEE Journal of Quantum Electronics.

[42]  H. Jenssen,et al.  Tunable-laser characteristics and spectroscopic properties of SrAlF 5 :Cr , 1986 .

[43]  M. Shand,et al.  CW laser pumped emerald laser , 1984 .

[44]  J. Caird,et al.  A ScBO3:Cr Laser , 1986 .

[45]  H. Jenssen,et al.  Ground state absorption in the lasing wavelength region of alexandrite: Theory and experiment , 1982 .

[46]  M. V. Rajasekharan,et al.  Broadband near‐infrared luminescence of Cr+3 in the elpasolite lattices Cs2NaInCl6, Cs2NaYCl6, and Cs2NaYBr6 , 1986 .