An ontological view in telemedicine

The verification and validation of information system models impact on the adequacy and appropriateness of using the value of telemedicine services for continuously optimizing healthcare outcomes. We have defined a methodology to help the modeling and rigorous analysis of the requirements of information systems in telemedicine. On one hand, this methodology will be based on a formal representation of requirements (systemic, generic domain, etc.) within a knowledge base that will be a requirements repository. On the other hand, this methodology will use conceptual graphs for the formalization of ontology of activities and the production of arguments related to the formal verification of models built from this ontology. We describe an example illustrating the engagement of conceptual graph procedures to model the contextual situations in the telemedicine development. We also discuss the way in which ethical issues will actually take place in telemedicine applications.

[1]  Bernard Kamsu-Foguem,et al.  Systemic modeling in telemedicine , 2014 .

[2]  John F. Sowa,et al.  Knowledge representation: logical, philosophical, and computational foundations , 2000 .

[3]  Tugrul U. Daim,et al.  Research Forecasting for Health Information Technology (HIT), using technology intelligence , 2012 .

[4]  Sophie Dupuy-Chessa,et al.  A taxonomy of design methods process models , 2013, Inf. Softw. Technol..

[5]  Bernard Kamsu-Foguem,et al.  User-centered visual analysis using a hybrid reasoning architecture for intensive care units , 2012, Decision Support Systems.

[6]  Alan R. Hevner,et al.  The Three Cycle View of Design Science , 2007, Scand. J. Inf. Syst..

[7]  Richard Heeks,et al.  Information Systems and Developing Countries: Failure, Success, and Local Improvisations , 2002, Inf. Soc..

[8]  Mise en place humaine des systèmes d’information en cancérologie : mesure du degré d’applicabilité des moyens et de désordre (entropie) , 2012 .

[9]  Bernard Kamsu-Foguem,et al.  Verifying a medical protocol with temporal graphs: the case of a nosocomial disease. , 2014, Journal of critical care.

[10]  Madalina Croitoru,et al.  Visual reasoning with graph-based mechanisms: the good, the better and the best , 2013, The Knowledge Engineering Review.

[11]  Colette Rolland,et al.  Supporting Requirements Elicitation through Goal/Scenario Coupling , 2009, Conceptual Modeling: Foundations and Applications.

[12]  John F. Sowa,et al.  Conceptual Structures: Information Processing in Mind and Machine , 1983 .

[13]  Robert A. Meyers,et al.  Encyclopedia of physical science and technology , 1987 .

[14]  Bernard Kamsu-Foguem,et al.  Conceptual graph operations for formal visual reasoning in the medical domain , 2014 .

[15]  Colette Rolland,et al.  From conceptual modelling to requirements engineering , 2000, Ann. Softw. Eng..

[16]  Russell E. Glasgow,et al.  Implementation science approaches for integrating eHealth research into practice and policy , 2014, Int. J. Medical Informatics.

[17]  Bruce I. Blum,et al.  Software engineering - a holistic view , 1992 .

[18]  Bernard Kamsu-Foguem,et al.  Conceptual graph-based knowledge representation for supporting reasoning in African traditional medicine , 2013, Eng. Appl. Artif. Intell..

[19]  Pamela Zave Classification of research efforts in requirements engineering , 1997, ACM Comput. Surv..

[20]  Samir Chatterjee,et al.  A Design Science Research Methodology for Information Systems Research , 2008 .

[21]  Mamadou Bilo Doumbouya,et al.  Telemedicine using mobile telecommunication: Towards syntactic interoperability in teleexpertise , 2014, Telematics Informatics.

[22]  Steve Easterbrook,et al.  Formal methods for verification and validation of partial specifications: A case study , 1998, J. Syst. Softw..

[23]  Ollivier Haemmerlé,et al.  A Semantic Validation of Conceptual Graphs , 1998, ICCS.

[24]  John F. Sowa,et al.  Extending and Formalizing the Framework for Information Systems Architecture , 1992, IBM Syst. J..

[25]  Michael Jackson,et al.  Software requirements & specifications , 1995 .

[26]  Ebrahim Nageba,et al.  Towards an intelligent exploitation of heterogeneous and distributed resources in cooperative environments of eHealth , 2013 .

[27]  Peter Hoonakker,et al.  Human factors systems approach to healthcare quality and patient safety. , 2014, Applied ergonomics.

[28]  Colette Rolland,et al.  Measuring the fitness relationship , 2005, Requirements Engineering.

[29]  Jean-François Baget,et al.  Extensions of Simple Conceptual Graphs: the Complexity of Rules and Constraints , 2011, J. Artif. Intell. Res..

[30]  Michael Uschold,et al.  Ontologies: principles, methods and applications , 1996, The Knowledge Engineering Review.

[31]  Bernard Kamsu-Foguem,et al.  Using conceptual graphs for clinical guidelines representation and knowledge visualization , 2014, Inf. Syst. Frontiers.

[32]  Petr Neuzil,et al.  Noninvasive assessment of hemodynamic variables using near-infrared spectroscopy in patients experiencing cardiogenic shock and individuals undergoing venoarterial extracorporeal membrane oxygenation. , 2014, Journal of critical care.

[33]  Évaluation éthique des systèmes d’information auprès des acteurs de santé , 2013 .

[34]  Michael Luck,et al.  Graphical norms via conceptual graphs , 2012, Knowl. Based Syst..

[35]  Bernard Kamsu-Foguem,et al.  Knowledge-based support in Non-Destructive Testing for health monitoring of aircraft structures , 2012, Adv. Eng. Informatics.

[36]  Marie-Laure Mugnier,et al.  Graph-based Knowledge Representation - Computational Foundations of Conceptual Graphs , 2008, Advanced Information and Knowledge Processing.