Developments of furan and benzodifuran semiconductors for organic photovoltaics

This review describes the developments of organic photovoltaic materials containing furan or benzo[1,2-b:4,5-b′]difuran (BDF) building blocks. Promising power conversion efficiencies above 6% have been achieved in the past two years for the BDF donor–acceptor polymers. Fundamentals of organic photovoltaics are briefly introduced at the beginning of this review. The uniqueness and advantages of BDF building block in semiconducting materials are discussed and compared with benzo[1,2-b:4,5-b′]dithiophene analogues.

[1]  Yongfang Li,et al.  A benzo[1,2-b:4,5-b′]difuran- and thieno-[3,4-b]thiophene-based low bandgap copolymer for photovoltaic applications , 2013 .

[2]  F. Krebs Polymeric Solar Cells: Materials, Design, Manufacture , 2010 .

[3]  M. McGehee,et al.  Pictures from the blended zone , 2006, Nature materials.

[4]  Andrew C. Stuart,et al.  Fluorinated Polymer Yields High Organic Solar Cell Performance for a Wide Range of Morphologies , 2013 .

[5]  Yongfang Li,et al.  High performance polymer solar cells based on a two dimensional conjugated polymer from alkylthienyl-substituted benzodifuran and benzothiadiazole , 2014 .

[6]  K. Kanazawa,et al.  Electrochemical polymerization of pyrrole , 1979 .

[7]  He Yan,et al.  Aggregation and morphology control enables multiple cases of high-efficiency polymer solar cells , 2014, Nature Communications.

[8]  Hongbin Wu,et al.  Flexible polymer solar cells with power conversion efficiency of 8.7 , 2014 .

[9]  S. Glenis,et al.  Influence of the doping on the photovoltaic properties of thin films of poly-3-methylthiophene , 1986 .

[10]  P. Frère,et al.  Facile Access via Green Procedures to a Material with the Benzodifuran Moiety for Organic Photovoltaics , 2014 .

[11]  H. D. Magurudeniya,et al.  Poly(3-hexylthiophene) nanostructured materials for organic electronics applications. , 2014, Journal of nanoscience and nanotechnology.

[12]  H. Letheby XXIX.—On the production of a blue substance by the electrolysis of sulphate of aniline , 1862 .

[13]  C. Bardeen The structure and dynamics of molecular excitons. , 2014, Annual review of physical chemistry.

[14]  H. Sirringhaus An equal-opportunity conductor , 2003, Nature Materials.

[15]  F. Krebs,et al.  A roll-to-roll process to flexible polymer solar cells: model studies, manufacture and operational stability studies , 2009 .

[16]  Ji-hoon Kim,et al.  High Open Circuit Voltage Solution-Processed Tandem Organic Photovoltaic Cells Employing a Bottom Cell Using a New Medium Band Gap Semiconducting Polymer , 2013 .

[17]  C. Brabec,et al.  Origin of the Open Circuit Voltage of Plastic Solar Cells , 2001 .

[18]  C. Luscombe,et al.  Influence of fluorine substituents on the film dielectric constant and open-circuit voltage in organic photovoltaics , 2014 .

[19]  W. Meier,et al.  Benzodifuran-Based π-Conjugated Copolymers for Bulk Heterojunction Solar Cells , 2010 .

[20]  H. D. Magurudeniya,et al.  Donor–acceptor semiconducting polymers for organic solar cells , 2013 .

[21]  Christopher J. Tassone,et al.  Ordering Effects in Benzo[1,2‐b:4,5‐b′]difuran‐thieno[3,4‐c]pyrrole‐4,6‐dione Polymers with >7% Solar Cell Efficiency , 2014, Advanced materials.

[22]  Zhaojun Li,et al.  Conjugated and Nonconjugated Substitution Effect on Photovoltaic Properties of Benzodifuran-Based Photovoltaic Polymers , 2012 .

[23]  Wei You,et al.  Fluorine substituted conjugated polymer of medium band gap yields 7% efficiency in polymer-fullerene solar cells. , 2011, Journal of the American Chemical Society.

[24]  Noam Rappaport,et al.  Charge Transport in Disordered Organic Materials and Its Relevance to Thin‐Film Devices: A Tutorial Review , 2009 .

[25]  Chain‐Shu Hsu,et al.  Synthesis of conjugated polymers for organic solar cell applications. , 2009, Chemical reviews.

[26]  J. Hummelen,et al.  Polymer Photovoltaic Cells: Enhanced Efficiencies via a Network of Internal Donor-Acceptor Heterojunctions , 1995, Science.

[27]  Anna Köhler,et al.  Charge transport in organic semiconductors. , 2012, Topics in current chemistry.

[28]  L. Yu,et al.  Electrochemical chains using protolytic organic semiconductors , 1968 .

[29]  A. MacDiarmid,et al.  "Synthetic Metals": A Novel Role for Organic Polymers (Nobel Lecture). , 2001, Angewandte Chemie.

[30]  Ji-hoon Kim,et al.  A high molecular weight triisopropylsilylethynyl (TIPS)-benzodithiophene and diketopyrrolopyrrole-based copolymer for high performance organic photovoltaic cells , 2014 .

[31]  Kai Xie,et al.  Review Paper: Progress on efficient cathodes for organic light‐emitting diodes , 2011 .

[32]  Yongfang Li,et al.  Synthesis of a 4,8-dialkoxy-benzo[1,2-b:4,5-b']difuran unit and its application in photovoltaic polymer. , 2012, Chemical communications.

[33]  A. Diaz,et al.  [Pt]polypyrrole: a new organic electrode material , 1981 .

[34]  T. Kauffmann,et al.  Übergangsmetallaktivierte organische Verbindungen, IX: Synthese von Polyfuranen durch metallorganische oxidative Kupplung , 1981 .

[35]  R. N. Marks,et al.  Light-emitting diodes based on conjugated polymers , 1990, Nature.

[36]  H. Yao,et al.  Side Chain Selection for Designing Highly Efficient Photovoltaic Polymers with 2D-Conjugated Structure , 2014 .

[37]  Sam-Shajing Sun,et al.  Organic Photovoltaics : Mechanisms, Materials, and Devices , 2005 .

[38]  E. W. Meijer,et al.  Two-dimensional charge transport in self-organized, high-mobility conjugated polymers , 1999, Nature.

[39]  Jisoo Shin,et al.  Synthesis and photovoltaic properties of benzo[1,2-b:4,5-b′]dithiophene derivative-based polymers with deep HOMO levels , 2012 .

[40]  John W. Murphy,et al.  Structural variation of donor–acceptor copolymers containing benzodithiophene with bithienyl substituents to achieve high open circuit voltage in bulk heterojunction solar cells , 2013 .

[41]  John R. Tumbleston,et al.  Controlling Molecular Weight of a High Efficiency Donor‐Acceptor Conjugated Polymer and Understanding Its Significant Impact on Photovoltaic Properties , 2014, Advanced materials.

[42]  A. Dadvand,et al.  Towards "green" electronic materials. α-Oligofurans as semiconductors. , 2011, Chemical communications.

[43]  Yongfang Li,et al.  Benzo[1,2-b:4,5-b′]difuran-Based Donor–Acceptor Copolymers for Polymer Solar Cells , 2012 .

[44]  Takakazu Yamamoto,et al.  Preparation of thermostable and electric-conducting poly(2,5-thienylene) , 1980 .

[45]  Richard D. McCullough,et al.  Enhanced electrical conductivity in regioselectively synthesized poly(3-alkylthiophenes) , 1992 .

[46]  Tracey M. Clarke,et al.  Charge photogeneration in organic solar cells. , 2010, Chemical reviews.

[47]  David Beljonne,et al.  The Role of Driving Energy and Delocalized States for Charge Separation in Organic Semiconductors , 2012, Science.

[48]  M. Toney,et al.  Side-chain tunability of furan-containing low-band-gap polymers provides control of structural order in efficient solar cells. , 2012, Journal of the American Chemical Society.

[49]  J. Fréchet,et al.  Linear side chains in benzo[1,2-b:4,5-b']dithiophene-thieno[3,4-c]pyrrole-4,6-dione polymers direct self-assembly and solar cell performance. , 2013, Journal of the American Chemical Society.

[50]  Mikkel Jørgensen,et al.  25th Anniversary Article: Rise to Power – OPV‐Based Solar Parks , 2014, Advanced materials.

[51]  Valentin D. Mihailetchi,et al.  Ultimate efficiency of polymer/fullerene bulk heterojunction solar cells , 2006 .

[52]  Malte C. Gather,et al.  Solution‐Processed Full‐Color Polymer Organic Light‐Emitting Diode Displays Fabricated by Direct Photolithography , 2007 .

[53]  Markus Schwoerer,et al.  Electrical and optical characterization of poly(phenylene-vinylene) light emitting diodes , 1993 .

[54]  Ian H. Campbell,et al.  Electrical impedance measurements of polymer light-emitting diodes , 1995 .

[55]  R. Tscharner,et al.  Photovoltaic technology: the case for thin-film solar cells , 1999, Science.

[56]  W. Meier,et al.  Benzodifuran‐containing well‐defined π‐conjugated polymers for photovoltaic cells , 2012 .

[57]  Torahiko Ando,et al.  Field-effect transistor with polythiophene thin film , 1987 .

[58]  A. Matzger,et al.  Regiochemical effects of furan substitution on the electronic properties and solid-state structure of partial fused-ring oligothiophenes. , 2012, The Journal of organic chemistry.

[59]  Ashraf Uddin,et al.  RETRACTED: Effect of thermal annealing on P3HT:PCBM bulk-heterojunction organic solar cells: A critical review , 2014 .

[60]  M. Stefan,et al.  Synthesis and photovoltaic performance of donor–acceptor polymers containing benzo[1,2‐b:4,5‐b′]dithiophene with thienyl substituents , 2013 .

[61]  Yang Wang,et al.  New Alkylfuranyl-Substituted Benzo[1,2-b:4,5-b′]dithiophene-Based Donor–Acceptor Polymers for Highly Efficient Solar Cells , 2013 .

[62]  Benjamin G. Janesko,et al.  Influence of the Alkyl Substituents Spacing on the Solar Cell Performance of Benzodithiophene Semiconducting Polymers , 2012 .

[63]  I. Samuel,et al.  Exciton Diffusion Measurements in Poly(3‐hexylthiophene) , 2008 .

[64]  Ji-hoon Kim,et al.  Semiconducting copolymers comprising benzodithiophene and benzotriazole derivatives for organic photovoltaic cells , 2013 .

[65]  Yongfang Li,et al.  Synthesis and photovoltaic properties of two-dimension-conjugated D–A copolymers based on benzodithiophene or benzodifuran units , 2013 .

[66]  W. You,et al.  Rational Design of High Performance Conjugated Polymers for Organic Solar Cells , 2012 .

[67]  A. Heeger,et al.  High‐Efficiency Polymer Solar Cells Enhanced by Solvent Treatment , 2013, Advanced materials.

[68]  D. Resasco,et al.  Hydrodeoxygenation of Furfural Over Supported Metal Catalysts: A Comparative Study of Cu, Pd and Ni , 2011 .

[69]  Paul A. van Hal,et al.  Efficient methano[70]fullerene/MDMO-PPV bulk heterojunction photovoltaic cells. , 2003, Angewandte Chemie.

[70]  B. Weinberger,et al.  Polyacetylene photovoltaic devices , 1982 .

[71]  Wei Ma,et al.  An Easy and Effective Method to Modulate Molecular Energy Level of the Polymer Based on Benzodithiophene for the Application in Polymer Solar Cells , 2014, Advanced materials.

[72]  M. Stefan,et al.  Synthesis and optoelectronic properties of novel benzodifuran semiconducting polymers , 2012 .

[73]  M. Stefan,et al.  Polymers containing rigid benzodithiophene repeating unit with extended electron delocalization. , 2009, Organic letters.

[74]  Jianhui Hou,et al.  Efficient Polymer Solar Cells Based on Benzothiadiazole and Alkylphenyl Substituted Benzodithiophene with a Power Conversion Efficiency over 8% , 2013, Advanced materials.

[75]  G. Sotzing,et al.  Poly(thieno[3,4-b]furan), a New Low Band Gap Polymer: Experiment and Theory , 2008 .

[76]  M. Stefan,et al.  Donor–Acceptor Semiconducting Polymers Containing Benzodithiophene with Bithienyl Substituents , 2012 .

[77]  Shinuk Cho,et al.  New TIPS-substituted benzo[1,2-b:4,5-b′]dithiophene-based copolymers for application in polymer solar cells , 2012 .

[78]  Trisha L. Andrew,et al.  An air-stable low-bandgap n-type organic polymer semiconductor exhibiting selective solubility in perfluorinated solvents. , 2012, Angewandte Chemie.

[79]  John R. Reynolds,et al.  High-efficiency inverted dithienogermole–thienopyrrolodione-based polymer solar cells , 2011, Nature Photonics.

[80]  Gang Li,et al.  “Solvent Annealing” Effect in Polymer Solar Cells Based on Poly(3‐hexylthiophene) and Methanofullerenes , 2007 .

[81]  A. Facchetti,et al.  Design, synthesis, and characterization of ladder-type molecules and polymers. Air-stable, solution-processable n-channel and ambipolar semiconductors for thin-film transistors via experiment and theory. , 2009, Journal of the American Chemical Society.

[82]  T. Nishinaga,et al.  Synthesis and structural, electronic, and optical properties of oligo(thienylfuran)s in comparison with oligothiophenes and oligofurans. , 2005, The Journal of organic chemistry.

[83]  A. Heeger,et al.  Effects of Solvent Additives on Morphology, Charge Generation, Transport, and Recombination in Solution‐Processed Small‐Molecule Solar Cells , 2014 .

[84]  Long Ye,et al.  Highly Efficient 2D-Conjugated Benzodithiophene-Based Photovoltaic Polymer with Linear Alkylthio Side Chain , 2014 .

[85]  S. Jenekhe,et al.  New n-type polymer semiconductors based on naphthalene diimide and selenophene derivatives for organic field-effect transistors , 2013 .

[86]  Feng Xu,et al.  Replacing alkoxy groups with alkylthienyl groups: a feasible approach to improve the properties of photovoltaic polymers. , 2011, Angewandte Chemie.

[87]  Y. Liu,et al.  Significant Enhancement of Polymer Solar Cell Performance via Side-Chain Engineering and Simple Solvent Treatment , 2013 .

[88]  U. Rau,et al.  Detailed balance theory of excitonic and bulk heterojunction solar cells , 2008 .

[89]  N. S. Sariciftci,et al.  A review of charge transport and recombination in polymer/fullerene organic solar cells , 2007 .

[90]  Benjamin G. Janesko,et al.  Synthesis, characterization, and computational modeling of benzodithiophene donor–acceptor semiconducting polymers , 2011 .

[91]  Gang Li,et al.  For the Bright Future—Bulk Heterojunction Polymer Solar Cells with Power Conversion Efficiency of 7.4% , 2010, Advanced materials.

[92]  Highly Efficient Solar Cells Based on the Copolymer of Benzodithiophene and Thienopyrroledione with Solvent Annealing , 2013 .

[93]  C. Yi,et al.  Versatile strategy to access fully functionalized benzodifurans: redox-active chromophores for the construction of extended pi-conjugated materials. , 2010, The Journal of organic chemistry.

[94]  S. Isoda,et al.  Synthesis of oligo(thienylfuran)s with thiophene rings at both ends and their structural, electronic, and field-effect properties. , 2007, Chemistry, an Asian journal.

[95]  Antonio Facchetti,et al.  Semiconductors for organic transistors , 2007 .

[96]  C. Schönenberger,et al.  Regulating a benzodifuran single molecule redox switch via electrochemical gating and optimization of molecule/electrode coupling. , 2014, Journal of the American Chemical Society.

[97]  A. Heeger,et al.  Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene, (CH)x , 1977 .

[98]  Zhaojun Li,et al.  Benzodifuran-alt-thienothiophene based low band gap copolymers: substituent effects on their molecular energy levels and photovoltaic properties , 2013 .

[99]  T. Kauffmann From the Principle of Areno‐Analogy to Heterocyclopolyaromatic Compounds , 1979 .

[100]  Hongbo Lu,et al.  A bis(2-oxoindolin-3-ylidene)-benzodifuran-dione containing copolymer for high-mobility ambipolar transistors. , 2014, Chemical communications.

[101]  A. Heeger Nobel Lecture: Semiconducting and metallic polymers: The fourth generation of polymeric materials* , 2001 .

[102]  John W. Murphy,et al.  Synthesis and Electronic Properties of Semiconducting Polymers Containing Benzodithiophene with Alkyl Phenylethynyl Substituents , 2010 .

[103]  Fujun Zhang,et al.  The underlying reason of DIO additive on the improvement polymer solar cells performance , 2014 .

[104]  Yingying Fu,et al.  Synthesis and photovoltaic properties of new conjugated polymers based on syn- and anti-benzodifuran , 2012 .

[105]  J. Hao,et al.  Enhancement of OFET performance of semiconducting polymers containing benzodithiophene upon surface treatment with organic silanes , 2011 .

[106]  Yongfang Li,et al.  Improvement of open-circuit voltage and photovoltaic properties of 2D-conjugated polymers by alkylthio substitution , 2014 .

[107]  M. Stefan,et al.  Benzo[1,2-b:4,5-b']dithiophene building block for the synthesis of semiconducting polymers. , 2012, Macromolecular rapid communications.

[108]  Yongfang Li,et al.  A Copolymer of Benzodithiophene with TIPS Side Chains for Enhanced Photovoltaic Performance , 2011 .

[109]  Stephen C. Moratti,et al.  EXCITON DIFFUSION AND DISSOCIATION IN A POLY(P-PHENYLENEVINYLENE)/C60 HETEROJUNCTION PHOTOVOLTAIC CELL , 1996 .

[110]  Yang Yang,et al.  Bandgap and Molecular Energy Level Control of Conjugated Polymer Photovoltaic Materials Based on Benzo[1,2-b:4,5-b']dithiophene , 2008 .

[111]  R. Grubbs,et al.  Soluble, Highly Conjugated Derivatives of Polyacetylene from the Ring-Opening Metathesis Polymerization of Monosubstituted Cyclooctatetraenes: Synthesis and the Relationship Between Polymer Structure and Physical Properties , 1993 .

[112]  Xiaoyu Li,et al.  Rational design on D–A conjugated P(BDT–DTBT) polymers for polymer solar cells , 2014 .

[113]  Zhenan Bao,et al.  Effects of Thermal Annealing Upon the Morphology of Polymer–Fullerene Blends , 2010 .

[114]  Yongli Gao,et al.  Organic field-effect transistor and its photoresponse using a benzo[1,2-b:4,5-b′]difuran-based donor–acceptor conjugated polymer , 2014 .

[115]  Christoph J. Brabec,et al.  Design Rules for Donors in Bulk‐Heterojunction Solar Cells—Towards 10 % Energy‐Conversion Efficiency , 2006 .