Deep Functional Maps: Structured Prediction for Dense Shape Correspondence

We introduce a new framework for learning dense correspondence between deformable 3D shapes. Existing learning based approaches model shape correspondence as a labelling problem, where each point of a query shape receives a label identifying a point on some reference domain; the correspondence is then constructed a posteriori by composing the label predictions of two input shapes. We propose a paradigm shift and design a structured prediction model in the space of functional maps, linear operators that provide a compact representation of the correspondence. We model the learning process via a deep residual network which takes dense descriptor fields defined on two shapes as input, and outputs a soft map between the two given objects. The resulting correspondence is shown to be accurate on several challenging benchmarks comprising multiple categories, synthetic models, real scans with acquisition artifacts, topological noise, and partiality.

[1]  Michael Garland,et al.  Surface simplification using quadric error metrics , 1997, SIGGRAPH.

[2]  Mark Meyer,et al.  Discrete Differential-Geometry Operators for Triangulated 2-Manifolds , 2002, VisMath.

[3]  Sebastian Thrun,et al.  SCAPE: shape completion and animation of people , 2005, SIGGRAPH '05.

[4]  Yann LeCun,et al.  Dimensionality Reduction by Learning an Invariant Mapping , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[5]  Ron Kimmel,et al.  Generalized multidimensional scaling: A framework for isometry-invariant partial surface matching , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[6]  Leonidas J. Guibas,et al.  A concise and provably informative multi-scale signature based on heat diffusion , 2009 .

[7]  Federico Tombari,et al.  Unique Signatures of Histograms for Local Surface Description , 2010, ECCV.

[8]  Ghassan Hamarneh,et al.  A Survey on Shape Correspondence , 2011, Comput. Graph. Forum.

[9]  Vladimir G. Kim,et al.  Blended intrinsic maps , 2011, ACM Trans. Graph..

[10]  Daniel Cremers,et al.  The wave kernel signature: A quantum mechanical approach to shape analysis , 2011, 2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops).

[11]  Maks Ovsjanikov,et al.  Functional maps , 2012, ACM Trans. Graph..

[12]  Zhengyou Zhang,et al.  Microsoft Kinect Sensor and Its Effect , 2012, IEEE Multim..

[13]  Daniel Cremers,et al.  Dense Non-rigid Shape Correspondence Using Random Forests , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[14]  Maks Ovsjanikov,et al.  Supervised Descriptor Learning for Non-Rigid Shape Matching , 2014, ECCV Workshops.

[15]  Daniel Cremers,et al.  Optimal Intrinsic Descriptors for Non-Rigid Shape Analysis , 2014, BMVC.

[16]  Leonidas J. Guibas,et al.  Functional map networks for analyzing and exploring large shape collections , 2014, ACM Trans. Graph..

[17]  Michael J. Black,et al.  FAUST: Dataset and Evaluation for 3D Mesh Registration , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[18]  A. Bronstein,et al.  Learning Spectral Descriptors for Deformable Shape Correspondence , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[19]  Tobias Gurdan Sparse Modeling of Intrinsic Correspondences , 2014 .

[20]  Ron Kimmel,et al.  On the Optimality of Shape and Data Representation in the Spectral Domain , 2014, SIAM J. Imaging Sci..

[21]  Michael J. Black,et al.  The stitched puppet: A graphical model of 3D human shape and pose , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[22]  Pierre Vandergheynst,et al.  Learning class‐specific descriptors for deformable shapes using localized spectral convolutional networks , 2015, SGP '15.

[23]  Jimmy Ba,et al.  Adam: A Method for Stochastic Optimization , 2014, ICLR.

[24]  Pierre Vandergheynst,et al.  Geodesic Convolutional Neural Networks on Riemannian Manifolds , 2015, 2015 IEEE International Conference on Computer Vision Workshop (ICCVW).

[25]  Xavier Bresson,et al.  Functional correspondence by matrix completion , 2014, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[26]  Vladlen Koltun,et al.  Robust Nonrigid Registration by Convex Optimization , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[27]  Daniel Cremers,et al.  Partial Matching of Deformable Shapes , 2016, 3DOR@Eurographics.

[28]  Ron Kimmel,et al.  Spectral Generalized Multi-dimensional Scaling , 2013, International Journal of Computer Vision.

[29]  Jian Sun,et al.  Deep Residual Learning for Image Recognition , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[30]  M. Bronstein,et al.  SHREC’16: Partial Matching of Deformable Shapes , 2016 .

[31]  Andrea Torsello,et al.  Matching Deformable Objects in Clutter , 2016, 2016 Fourth International Conference on 3D Vision (3DV).

[32]  Daniel Cremers,et al.  Non‐Rigid Puzzles , 2016, Comput. Graph. Forum.

[33]  Qi-Xing Huang,et al.  Dense Human Body Correspondences Using Convolutional Networks , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[34]  Davide Eynard,et al.  Coupled Functional Maps , 2016, 2016 Fourth International Conference on 3D Vision (3DV).

[35]  Daniel Cremers,et al.  Anisotropic Diffusion Descriptors , 2016, Comput. Graph. Forum.

[36]  Jonathan Masci,et al.  Learning shape correspondence with anisotropic convolutional neural networks , 2016, NIPS.

[37]  Alexander M. Bronstein,et al.  Recent Trends, Applications, and Perspectives in 3D Shape Similarity Assessment , 2016, Comput. Graph. Forum.

[38]  Sepp Hochreiter,et al.  Fast and Accurate Deep Network Learning by Exponential Linear Units (ELUs) , 2015, ICLR.

[39]  Pierre Vandergheynst,et al.  Geometric Deep Learning: Going beyond Euclidean data , 2016, IEEE Signal Process. Mag..

[40]  Daniel Cremers,et al.  Product Manifold Filter: Non-rigid Shape Correspondence via Kernel Density Estimation in the Product Space , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[41]  Maks Ovsjanikov,et al.  Informative Descriptor Preservation via Commutativity for Shape Matching , 2017, Comput. Graph. Forum.

[42]  Alexander M. Bronstein,et al.  Fully Spectral Partial Shape Matching , 2017, Comput. Graph. Forum.

[43]  Daniel Cremers,et al.  Partial Functional Correspondence , 2017 .

[44]  Jonathan Masci,et al.  Geometric Deep Learning on Graphs and Manifolds Using Mixture Model CNNs , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).