Data‐driven Evaluation of Visual Quality Measures

Visual quality measures seek to algorithmically imitate human judgments of patterns such as class separability, correlation, or outliers. In this paper, we propose a novel data‐driven framework for evaluating such measures. The basic idea is to take a large set of visually encoded data, such as scatterplots, with reliable human “ground truth” judgements, and to use this human‐labeled data to learn how well a measure would predict human judgements on previously unseen data. Measures can then be evaluated based on predictive performance—an approach that is crucial for generalizing across datasets but has gained little attention so far. To illustrate our framework, we use it to evaluate 15 state‐of‐the‐art class separation measures, using human ground truth data from 828 class separation judgments on color‐coded 2D scatterplots.

[1]  Steven Franconeri,et al.  Ranking Visualizations of Correlation Using Weber's Law , 2014, IEEE Transactions on Visualization and Computer Graphics.

[2]  Tamara Munzner,et al.  A Taxonomy of Visual Cluster Separation Factors , 2012, Comput. Graph. Forum.

[3]  Keinosuke Fukunaga,et al.  Introduction to statistical pattern recognition (2nd ed.) , 1990 .

[4]  Jarke J. van Wijk,et al.  What Does the User Want to See? What do the Data Want to Be? , 2009, Inf. Vis..

[5]  Marcus A. Magnor,et al.  Combining automated analysis and visualization techniques for effective exploration of high-dimensional data , 2009, 2009 IEEE Symposium on Visual Analytics Science and Technology.

[6]  Carlos Eduardo Scheidegger,et al.  An Algebraic Process for Visualization Design , 2014, IEEE Transactions on Visualization and Computer Graphics.

[7]  Joshua M. Lewis,et al.  Human Cluster Evaluation and Formal Quality Measures: A Comparative Study , 2012, CogSci.

[8]  Tamara Munzner,et al.  Empirical Guidance on Scatterplot and Dimension Reduction Technique Choices , 2013, IEEE Transactions on Visualization and Computer Graphics.

[9]  Ronald A. Rensink,et al.  The Perception of Correlation in Scatterplots , 2010, Comput. Graph. Forum.

[10]  Marcus A. Magnor,et al.  Perception-based visual quality measures , 2011, 2011 IEEE Conference on Visual Analytics Science and Technology (VAST).

[11]  Michaël Aupetit,et al.  Sanity check for class-coloring-based evaluation of dimension reduction techniques , 2014, BELIV.

[12]  Daniel A. Keim,et al.  Visual quality metrics and human perception: an initial study on 2D projections of large multidimensional data , 2010, AVI.

[13]  Matthew D. Cooper,et al.  A Screen Space Quality Method for Data Abstraction , 2008, Comput. Graph. Forum.

[14]  Tobias Isenberg,et al.  A Systematic Review on the Practice of Evaluating Visualization , 2013, IEEE Transactions on Visualization and Computer Graphics.

[15]  Robert Kosara,et al.  Pargnostics: Screen-Space Metrics for Parallel Coordinates , 2010, IEEE Transactions on Visualization and Computer Graphics.

[16]  R. Grossman,et al.  Graph-theoretic scagnostics , 2005, IEEE Symposium on Information Visualization, 2005. INFOVIS 2005..

[17]  John P. Lewis,et al.  Eurographics/ Ieee-vgtc Symposium on Visualization 2009 Selecting Good Views of High-dimensional Data Using Class Consistency , 2022 .

[18]  Keinosuke Fukunaga,et al.  Introduction to Statistical Pattern Recognition , 1972 .

[19]  Chris North,et al.  Information Visualization , 2008, Lecture Notes in Computer Science.

[20]  M. Sheelagh T. Carpendale,et al.  Empirical Studies in Information Visualization: Seven Scenarios , 2012, IEEE Transactions on Visualization and Computer Graphics.

[21]  Radford M. Neal Pattern Recognition and Machine Learning , 2007, Technometrics.

[22]  Naftali Tishby,et al.  Margin based feature selection - theory and algorithms , 2004, ICML.

[23]  Joydeep Ghosh,et al.  Relationship-based clustering and cluster ensembles for high-dimensional data mining , 2002 .

[24]  Tom Fawcett,et al.  An introduction to ROC analysis , 2006, Pattern Recognit. Lett..

[25]  Nasser M. Nasrabadi,et al.  Pattern Recognition and Machine Learning , 2006, Technometrics.

[26]  M. Kenward,et al.  An Introduction to the Bootstrap , 2007 .

[27]  Joshua M. Lewis,et al.  A Behavioral Investigation of Dimensionality Reduction , 2012, CogSci.

[28]  P. Rousseeuw Silhouettes: a graphical aid to the interpretation and validation of cluster analysis , 1987 .

[29]  Enrico Bertini,et al.  Quality Metrics in High-Dimensional Data Visualization: An Overview and Systematization , 2011, IEEE Transactions on Visualization and Computer Graphics.

[30]  M. Sheelagh T. Carpendale,et al.  Evaluating Information Visualizations , 2008, Information Visualization.

[31]  J. Dunn Well-Separated Clusters and Optimal Fuzzy Partitions , 1974 .

[32]  L. Hubert,et al.  Measuring the Power of Hierarchical Cluster Analysis , 1975 .

[33]  Jeffrey Heer,et al.  Crowdsourcing graphical perception: using mechanical turk to assess visualization design , 2010, CHI.

[34]  Kohji Fukunaga,et al.  Introduction to Statistical Pattern Recognition-Second Edition , 1990 .

[35]  A. O'connell Logistic Regression Models for Ordinal Response Variables , 2005 .

[36]  T. Caliński,et al.  A dendrite method for cluster analysis , 1974 .

[37]  David Whitney,et al.  How Capacity Limits of Attention Influence Information Visualization Effectiveness , 2012, IEEE Transactions on Visualization and Computer Graphics.

[38]  Robson Motta,et al.  Graph-based measures to assist user assessment of multimensional projections , 2015, Neurocomputing.

[39]  Christopher M. Bishop,et al.  Pattern Recognition and Machine Learning (Information Science and Statistics) , 2006 .

[40]  John W. Tukey,et al.  A Projection Pursuit Algorithm for Exploratory Data Analysis , 1974, IEEE Transactions on Computers.