Direct discretizations of bi-variate population balance systems with finite difference schemes of different order

[1]  Volker John,et al.  Techniques for the reconstruction of a distribution from a finite number of its moments , 2007 .

[2]  Volker John,et al.  A numerical method for the simulation of an aggregation‐driven population balance system , 2012 .

[3]  Arvind Rajendran,et al.  Lattice Boltzmann method for multi-dimensional population balance models in crystallization , 2012 .

[4]  O. Suciu Numerical methods based on direct discretizations for uni- and bi-variate population balance systems , 2014 .

[5]  Gunar Matthies,et al.  MooNMD – a program package based on mapped finite element methods , 2004 .

[6]  Sashikumaar Ganesan,et al.  An operator-splitting finite element method for the efficient parallel solution of multidimensional population balance systems , 2012 .

[7]  Volker John,et al.  On the impact of the scheme for solving the higher dimensional equation in coupled population balance systems , 2010 .

[8]  Mohammed M. Farid,et al.  Fundamentals Of Computational Fluid Dynamics , 2001 .

[9]  K. Sundmacher,et al.  Simulations of Population Balance Systems with One Internal Coordinate using Finite Element Methods , 2009 .

[10]  C. Hirsch Numerical computation of internal and external flows , 1988 .

[11]  V. John,et al.  Simulations of 3D/4D Precipitation Processes in a Turbulent Flow Field , 2010 .

[12]  S. Katz,et al.  Some problems in particle technology: A statistical mechanical formulation , 1964 .

[13]  Volker John,et al.  Finite element methods for time-dependent convection – diffusion – reaction equations with small diffusion , 2008 .

[14]  Daniele Marchisio,et al.  Solution of population balance equations using the direct quadrature method of moments , 2005 .

[15]  Daniele Marchisio,et al.  Multivariate Quadrature-Based Moments Methods for turbulent polydisperse gas–liquid systems , 2013 .

[16]  Chi-Wang Shu,et al.  High Order Weighted Essentially Nonoscillatory Schemes for Convection Dominated Problems , 2009, SIAM Rev..

[17]  Robert McGraw,et al.  Description of Aerosol Dynamics by the Quadrature Method of Moments , 1997 .

[18]  J. Szmelter Incompressible flow and the finite element method , 2001 .

[19]  C. Borchert Topics in crystal shape dynamics , 2012 .

[20]  S. Osher,et al.  Uniformly high order accuracy essentially non-oscillatory schemes III , 1987 .

[21]  Volker John,et al.  On Finite Element Methods for 3D Time-Dependent Convection-Diffusion-Reaction Equations with Small Diffusion , 2008 .

[22]  D. L. Ma,et al.  IDENTIFICATION OF KINETIC PARAMETERS IN MULTIDIMENSIONAL CRYSTALLIZATION PROCESSES , 2002 .

[23]  Volker John,et al.  Numerical methods for the simulation of a coalescence-driven droplet size distribution , 2013 .

[24]  Volker John,et al.  Reconstruction of a distribution from a finite number of moments with an adaptive spline-based algorithm , 2010 .

[25]  Volker John,et al.  On (essentially) non-oscillatory discretizations of evolutionary convection-diffusion equations , 2012, J. Comput. Phys..

[26]  S. Osher,et al.  Uniformly High-Order Accurate Nonoscillatory Schemes. I , 1987 .

[27]  Dmitri Kuzmin,et al.  Explicit and implicit FEM-FCT algorithms with flux linearization , 2009, J. Comput. Phys..

[28]  K. Sundmacher,et al.  Crystal Aggregation in a Flow Tube: Image-Based Observation , 2011 .

[29]  David L. Ma,et al.  Worst-case analysis of finite-time control policies , 2001, IEEE Trans. Control. Syst. Technol..

[30]  S. Osher,et al.  Uniformly high order accurate essentially non-oscillatory schemes, 111 , 1987 .

[31]  R. Braatz,et al.  Solute concentration prediction using chemometrics and ATR-FTIR spectroscopy , 2001 .

[32]  Sashikumaar Ganesan,et al.  An operator-splitting Galerkin/SUPG finite element method for population balance equations : stability and convergence , 2012 .