Cellulose Nanofibers: Fabrication and Surface Functionalization Techniques

[1]  Sevket U. Yuruker,et al.  Highly Compressible, Anisotropic Aerogel with Aligned Cellulose Nanofibers. , 2017, ACS nano.

[2]  A. Dufresne,et al.  Emerging Applications of Cellulose Nanofibers , 2018 .

[3]  P. Samyn,et al.  Engineered nanomaterials for papermaking industry , 2018 .

[4]  S. Ribeiro,et al.  Hydrothermal synthesis of bacterial cellulose-copper oxide nanocomposites and evaluation of their antimicrobial activity. , 2018, Carbohydrate polymers.

[5]  A. Dufresne,et al.  Review of recent research on flexible multifunctional nanopapers. , 2017, Nanoscale.

[6]  Jonathan A. Hamel,et al.  Ultralight, highly thermally insulating and fire resistant aerogel by encapsulating cellulose nanofibers with two-dimensional MoS2. , 2017, Nanoscale.

[7]  I. Smalyukh,et al.  Liquid crystalline cellulose-based nematogels , 2017, Science Advances.

[8]  L. D. Del Valle,et al.  Hydrogels for Biomedical Applications: Cellulose, Chitosan, and Protein/Peptide Derivatives , 2017, Gels.

[9]  Pere Mutjé,et al.  Enzymatically hydrolyzed and TEMPO-oxidized cellulose nanofibers for the production of nanopapers: morphological, optical, thermal and mechanical properties , 2017, Cellulose.

[10]  Jian Zhou,et al.  Alcohol Recognition by Flexible, Transparent and Highly Sensitive Graphene-Based Thin-Film Sensors , 2017, Scientific Reports.

[11]  B. Young,et al.  Pretreatment of radiata pine using two white rot fungal strains Stereum hirsutum and Trametes versicolor , 2017 .

[12]  Rui Huang,et al.  Ultrathin flexible reduced graphene oxide/cellulose nanofiber composite films with strongly anisotropic thermal conductivity and efficient electromagnetic interference shielding , 2017 .

[13]  M. Lindström,et al.  Cellulose Nanofibers from Softwood, Hardwood, and Tunicate: Preparation-Structure-Film Performance Interrelation. , 2017, ACS applied materials & interfaces.

[14]  Qingfeng Sun,et al.  Fabrication of Cellulose Nanofiber/AlOOH Aerogel for Flame Retardant and Thermal Insulation , 2017, Materials.

[15]  Pieter Samyn,et al.  Review: nanoparticles and nanostructured materials in papermaking , 2017, Journal of Materials Science.

[16]  J. Bras,et al.  Production of cellulose nanofibrils: A review of recent advances , 2016 .

[17]  Sik Yoon,et al.  Three-dimensionally microporous and highly biocompatible bacterial cellulose–gelatin composite scaffolds for tissue engineering applications , 2016 .

[18]  Xinwen Peng,et al.  Flexible nanocomposites with ultrahigh specific areal capacitance and tunable properties based on a cellulose derived nanofiber-carbon sheet framework coated with polyaniline , 2016 .

[19]  Kukjoo Kim,et al.  Photo-patternable and transparent films using cellulose nanofibers for stretchable origami electronics , 2016 .

[20]  Sukho Park,et al.  Bendable and flexible supercapacitor based on polypyrrole-coated bacterial cellulose core-shell composite network , 2016 .

[21]  Zhaoyang Xu,et al.  Morphological and swelling behavior of cellulose nanofiber (CNF)/poly(vinyl alcohol) (PVA) hydrogels: Poly(ethylene glycol) (PEG) as porogen , 2016 .

[22]  Dong Soo Hwang,et al.  Mussel-Inspired Anisotropic Nanocellulose and Silver Nanoparticle Composite with Improved Mechanical Properties, Electrical Conductivity and Antibacterial Activity , 2016, Polymers.

[23]  W. Batchelor,et al.  Cellulose nanofibre aerogel filter with tuneable pore structure for oil/water separation and recovery , 2016 .

[24]  Madhu Kaushik,et al.  Review: nanocelluloses as versatile supports for metal nanoparticles and their applications in catalysis , 2016 .

[25]  E. Hassan,et al.  Chemical isolation and characterization of different cellulose nanofibers from cotton stalks. , 2015, Carbohydrate polymers.

[26]  M. Nogi,et al.  Transparent Conductive Nanofiber Paper for Foldable Solar Cells , 2015, Scientific Reports.

[27]  Marc Delgado Aguilar,et al.  Approaching a Low-Cost Production of Cellulose Nanofibers for Papermaking Applications , 2015 .

[28]  Arben Merkoçi,et al.  Nanopaper as an Optical Sensing Platform. , 2015, ACS nano.

[29]  Zheng Jia,et al.  Anomalous scaling law of strength and toughness of cellulose nanopaper , 2015, Proceedings of the National Academy of Sciences.

[30]  Xungai Wang,et al.  Preparation of cellulose nanofiber from softwood pulp by ball milling , 2015, Cellulose.

[31]  H. Manuspiya,et al.  A critical review on cellulose: From fundamental to an approach on sensor technology , 2015 .

[32]  Yulin Deng,et al.  Sol–gel synthesis highly porous titanium dioxide microspheres with cellulose nanofibrils-based aerogel templates , 2015 .

[33]  M. Mokhtar,et al.  A Review: Potential Usage of Cellulose Nanofibers (CNF) for Enzyme Immobilization via Covalent Interactions , 2015, Applied Biochemistry and Biotechnology.

[34]  Fei Wang,et al.  Cellulose nanofiber-templated three-dimension TiO2 hierarchical nanowire network for photoelectrochemical photoanode , 2014, Nanotechnology.

[35]  V. Thakur,et al.  Medical Applications of Cellulose and its Derivatives: Present and Future , 2014 .

[36]  C. Plummer,et al.  Cellulose nanofiber network for moisture stable, strong and ductile biocomposites and increased epoxy curing rate , 2014 .

[37]  P. Vikesland,et al.  Environmental science and engineering applications of nanocellulose-based nanocomposites , 2014 .

[38]  Jaber Hosseinzadeh,et al.  Preparation and characterization of modified cellulose nanofibers reinforced polylactic acid nanocomposite , 2014 .

[39]  K. Oksman,et al.  Handbook of Green Materials:Processing Technologies, Properties and Applications , 2014 .

[40]  K. Suganuma,et al.  Uniformly connected conductive networks on cellulose nanofiber paper for transparent paper electronics , 2014 .

[41]  Y. Hsieh,et al.  Super water absorbing and shape memory nanocellulose aerogels from TEMPO-oxidized cellulose nanofibrils via cyclic freezing–thawing , 2014 .

[42]  Athanasios Mantalaris,et al.  More than meets the eye in bacterial cellulose: biosynthesis, bioprocessing, and applications in advanced fiber composites. , 2014, Macromolecular bioscience.

[43]  T. Sabu,et al.  REVIEW OF RECENT RESEARCH IN NANO CELLULOSE PREPARATION FROM DIFFERENT LIGNOCELLULOSIC FIBERS , 2014 .

[44]  T. Nishino,et al.  Comparative effect of mechanical beating and nanofibrillation of cellulose on paper properties made from bagasse and softwood pulps. , 2013, Carbohydrate polymers.

[45]  O. Yasa,et al.  Efficient ammonium removal from aquatic environments by Acinetobacter calcoaceticus STB1 immobilized on an electrospun cellulose acetate nanofibrous web , 2013 .

[46]  David Hui,et al.  Effect of surface modification of bamboo cellulose fibers on mechanical properties of cellulose/epoxy composites , 2013 .

[47]  J. Bras,et al.  Nanofibrillated Cellulose Surface Modification: A Review , 2013, Materials.

[48]  Makoto. Nakamura,et al.  Polysaccharide nanofiber made from euglenoid alga. , 2013, Carbohydrate polymers.

[49]  H. Onoe,et al.  Cellular building unit integrated with microstrand-shaped bacterial cellulose. , 2013, Biomaterials.

[50]  F. G. Torres,et al.  Biocompatibility of Bacterial Cellulose Based Biomaterials , 2012, Journal of functional biomaterials.

[51]  Jianguo Huang,et al.  Cellulose-based material with amphiphobicity to inhibit bacterial adhesion by surface modification , 2012 .

[52]  John H T Luong,et al.  Applications of functionalized and nanoparticle-modified nanocrystalline cellulose. , 2012, Trends in biotechnology.

[53]  A. Tejado,et al.  Energy requirements for the disintegration of cellulose fibers into cellulose nanofibers , 2012, Cellulose.

[54]  Jianguo Huang,et al.  Cellulose substance with reversible photo-responsive wettability by surface modification , 2011 .

[55]  Robin H. A. Ras,et al.  Functionalization of nanofibrillated cellulose with silver nanoclusters: fluorescence and antibacterial activity. , 2011, Macromolecular bioscience.

[56]  H. Yano,et al.  Formation of hydrogels from cellulose nanofibers , 2011 .

[57]  Ashlie Martini,et al.  Cellulose nanomaterials review: structure, properties and nanocomposites. , 2011, Chemical Society reviews.

[58]  Mehdi Jonoobi,et al.  Physicochemical characterization of pulp and nanofibers from kenaf stem , 2011 .

[59]  Robin Zuluaga,et al.  Structural characterization of bacterial cellulose produced by Gluconacetobacter swingsii sp. from Colombian agroindustrial wastes , 2011 .

[60]  G. Chinga-Carrasco,et al.  Films made of cellulose nanofibrils: surface modification by adsorption of a cationic surfactant and characterization by computer-assisted electron microscopy , 2011 .

[61]  Wenshuai Chen,et al.  Individualization of cellulose nanofibers from wood using high-intensity ultrasonication combined with chemical pretreatments , 2011 .

[62]  Haipeng Yu,et al.  Isolation and characterization of cellulose nanofibers from four plant cellulose fibers using a chemical-ultrasonic process , 2011 .

[63]  S. Eichhorn Cellulose nanowhiskers: promising materials for advanced applications , 2011 .

[64]  A. S. Bawa,et al.  Bacterial cellulose nanocrystals exhibiting high thermal stability and their polymer nanocomposites. , 2011, International journal of biological macromolecules.

[65]  T. Iwata,et al.  Comparison study of TEMPO-analogous compounds on oxidation efficiency of wood cellulose for preparation of cellulose nanofibrils , 2010 .

[66]  L. Berglund,et al.  Making flexible magnetic aerogels and stiff magnetic nanopaper using cellulose nanofibrils as templates. , 2010, Nature nanotechnology.

[67]  A. Manzoli,et al.  Cellulose nanofibers from white and naturally colored cotton fibers , 2010 .

[68]  H. Yano,et al.  High-strength nanocomposite based on fibrillated chemi-thermomechanical pulp , 2009 .

[69]  D. Harper,et al.  Acetylation of cellulose nanowhiskers with vinyl acetate under moderate conditions. , 2009, Macromolecular bioscience.

[70]  G. Lyons,et al.  Preparation and characterization of Poly(vinyl alcohol) nanocomposites made from cellulose nanofibers , 2009 .

[71]  William T. Winter,et al.  Isolation, preparation and characterization of cellulose microfibers obtained from bagasse , 2008 .

[72]  Lucian A. Lucia,et al.  CELLULOSIC NANOCOMPOSITES: A REVIEW , 2008 .

[73]  Magnus Norgren,et al.  The build-up of polyelectrolyte multilayers of microfibrillated cellulose and cationic polyelectrolytes. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[74]  Gunnar Henriksson,et al.  An environmentally friendly method for enzyme-assisted preparation of microfibrillated cellulose (MFC) nanofibers , 2007 .

[75]  A. Ragauskas,et al.  Facile synthesis of spherical cellulose nanoparticles , 2007 .

[76]  M. Henriksson,et al.  Electrospinning of cellulose‐based nanofibers , 2007 .

[77]  Tetsuo Kondo,et al.  Enzymatically produced nano-ordered short elements containing cellulose Iβ crystalline domains , 2005 .

[78]  Ayan Chakraborty,et al.  Cellulose microfibrils: A novel method of preparation using high shear refining and cryocrushing , 2005 .

[79]  M. L. Cerrada,et al.  Surface silylation of cellulose microfibrils: preparation and rheological properties , 2004 .

[80]  Félix Sancenón,et al.  Fluorogenic and chromogenic chemosensors and reagents for anions. , 2003, Chemical reviews.

[81]  Dae-Young Kim,et al.  Surface acetylation of bacterial cellulose , 2002 .

[82]  Takeshi Okano,et al.  Birefringent Glassy Phase of a Cellulose Microcrystal Suspension , 2000 .

[83]  K. Nakamae,et al.  Elastic modulus of the crystalline regions of cellulose polymorphs , 1995 .

[84]  D. Sarkar,et al.  Loss of estradiol-positive feedback action on LH release during prepubertal period in rats treated postnatally with an opiate antagonist. , 1986, Neuroendocrinology.

[85]  J. Hamilton,et al.  Microfibrillated cellulose: morphology and accessibility , 1983 .