Ab Initio thermodynamic and elastic properties of alkaline-earth metals and their hydrides

A systematic investigation of the alkaline earth hydrides $\mathrm{Be}{\mathrm{H}}_{2}$, $\mathrm{Mg}{\mathrm{H}}_{2}$, $\mathrm{Ca}{\mathrm{H}}_{2}$, $\mathrm{Sr}{\mathrm{H}}_{2}$, $\mathrm{Ba}{\mathrm{H}}_{2}$, the corresponding deuterides, and their antecedent metals is reported. We calculate lattice parameters, electronic and vibrational energies, enthalpies of formation at 0 and $298\phantom{\rule{0.3em}{0ex}}\mathrm{K}$, components of the elasticity tensor, ${C}_{ij}$, and polycrystalline moduli based on the Hill criteria using density functional theory. Components of the Born effective charge tensors and phonon spectra are also computed for each hydride. We critically compare results obtained via the local density and generalized gradient approximations for the exchange-correlation energy functional. The volume dependence of the zero point energy is also investigated for Be and $\mathrm{Be}{\mathrm{H}}_{2}$.

[1]  Wang,et al.  Accurate and simple analytic representation of the electron-gas correlation energy. , 1992, Physical review. B, Condensed matter.

[2]  M. Ford,et al.  Conduction band electronic structure of metallic beryllium , 2001 .

[3]  A. Zunger,et al.  Self-interaction correction to density-functional approximations for many-electron systems , 1981 .

[4]  A. Nagi,et al.  The critical point in an antiferromagnetic superconductor , 1986 .

[5]  Paul Saxe,et al.  Symmetry-general least-squares extraction of elastic data for strained materials from ab initio calculations of stress , 2002 .

[6]  Y. Vohra,et al.  On the high-pressure phase transition in beryllium metal , 1984 .

[7]  E. Burstein,et al.  INFRARED LATTICE VIBRATIONS OF SINGLE CRYSTAL LITHIUM HYDRIDE AND SOME OF ITS ISOTOPIC DERIVATIONS. , 1967 .

[8]  L. Dagens The resonant model potential. II. Total energy: Theory and application to copper, silver, gold and calcium , 1977 .

[9]  J. Head,et al.  Lattice dynamics of crystalline beryllium hydride , 1989 .

[10]  L. Hector,et al.  Electronic structure calculations for LaNi5 and LaNi5H7: energetics and elastic properties , 2003 .

[11]  G. J. Snyder,et al.  Crystal structure of barium dihydride, BaH2 , 1994 .

[12]  Y. W. Yang,et al.  The electron density and bonding in beryllium metal as studied by Fourier methods , 1978 .

[13]  J. Evers,et al.  Lattice dynamics of strontium and barium , 1984 .

[14]  T. Darling,et al.  Beryllium's monocrystal and polycrystal elastic constants , 2004 .

[15]  F. Bechstedt,et al.  Linear optical properties in the projector-augmented wave methodology , 2006 .

[16]  Paxton,et al.  High-precision sampling for Brillouin-zone integration in metals. , 1989, Physical review. B, Condensed matter.

[17]  Stefano de Gironcoli,et al.  Phonons and related crystal properties from density-functional perturbation theory , 2000, cond-mat/0012092.

[18]  Georg Kresse,et al.  Ab initio Force Constant Approach to Phonon Dispersion Relations of Diamond and Graphite , 1995 .

[19]  V. Ozoliņš,et al.  Hydrogen in aluminum: First-principles calculations of structure and thermodynamics , 2004 .

[20]  J. C. Schottmiller,et al.  The Calcium–Strontium Metal Phase System , 1958 .

[21]  A. Kiejna,et al.  Bulk and surface properties of hexagonal-close-packed Be and Mg , 2001 .

[22]  F. Jona,et al.  Magnesium under pressure: structure and phase transition , 2003 .

[23]  G. Kennedy,et al.  Compressibility of 18 metals to 45 kbar , 1970 .

[24]  Ju Li,et al.  Mechanistic aspects and atomic-level consequences of elastic instabilities in homogeneous crystals , 2001 .

[25]  Y. Kawazoe,et al.  Ab initio studies of phonons in MgO by the direct method including LO mode , 2000 .

[26]  R. D. E. Bouzaidi,et al.  Elastic, electronic and crystal structure of BaH2: a pseudopotential study , 2002 .

[27]  J. Bergsma,et al.  The crystal structure of calcium hydride , 1962 .

[28]  D. Vanderbilt,et al.  Theory of polarization of crystalline solids. , 1993, Physical review. B, Condensed matter.

[29]  S. Opalka,et al.  First principles study of sodium–aluminum–hydrogen phases , 2003 .

[30]  L. Hector,et al.  Adhesion and adhesive transfer at aluminum/diamond interfaces: A first-principles study , 2004 .

[31]  R. Schulz,et al.  Structural study and hydrogen sorption kinetics of ball-milled magnesium hydride , 1999 .

[32]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[33]  Chen,et al.  Lattice dynamics of fct indium and hcp magnesium. , 1991, Physical Review B (Condensed Matter).

[34]  G. Vázquez,et al.  Ab initio calculation of the elastic constants of magnesium , 1995 .

[35]  J. Sofo,et al.  CALCULATION OF THE ELECTRONIC AND STRUCTURAL PROPERTIES OF CUBIC MG2NIH4 , 1999 .

[36]  J. S. Ononiwu PHONON DISPERSION CURVES IN THE LATTICE DYNAMICS OF BODY-CENTERED CUBIC ALKALINE-EARTH METAL BARIUM , 1998 .

[37]  H. Skriver,et al.  The electronic structure of calcium , 1981 .

[38]  B. Alder,et al.  THE GROUND STATE OF THE ELECTRON GAS BY A STOCHASTIC METHOD , 2010 .

[39]  H. Jacobs,et al.  Single Crystal X-Ray Structure Determinations on Calcium and Strontium Deuteride, CaD2 and SrD2. , 2010 .

[40]  R. Johnston,et al.  Global potentials for calcium and strontium solids , 1996 .

[41]  Yoshiyuki Kawazoe,et al.  First-Principles Determination of the Soft Mode in Cubic ZrO 2 , 1997 .

[42]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[43]  Robert Schulz,et al.  Catalytic effect of transition metals on hydrogen sorption in nanocrystalline ball milled MgH2-Tm (Tm=Ti, V, Mn, Fe and Ni) systems , 1999 .

[44]  N. Zein,et al.  Calculations of phonon frequencies and dielectric constants of alkali hydrides via the density functional method , 1991 .

[45]  W. Bronger,et al.  Die Kristallstruktur von Bariumhydrid, ermittelt über Neutronenbeugungsexperimente an BaD2 , 1987 .

[46]  Richard M. Martin,et al.  Microscopic theory of force constants in the adiabatic approximation , 1970 .

[47]  Evers,et al.  Lattice dynamics of fcc and bcc calcium. , 1986, Physical review. B, Condensed matter.

[48]  G. W. Lehman,et al.  Lattice Dynamics, Heat Capacities, and Debye-Waller Factors for Be and Zn Using a Modified Axially Symmetric Model , 1965 .

[49]  Callaway,et al.  Electronic structure and Fermi surface of calcium. , 1985, Physical review. B, Condensed matter.

[50]  N. Singh,et al.  Lattice Dynamics of Ca and Sr in B. C. C. and F. C. C. Phases. A dynamic treatment , 1990 .

[51]  D. Vanderbilt,et al.  Electric polarization as a bulk quantity and its relation to surface charge. , 1993, Physical review. B, Condensed matter.

[52]  L. Hector,et al.  Electronic and elastic properties of RCo5 and RCo5Hn (R = La, Ce, Pr) , 2004 .

[53]  Zeng,et al.  Density-functional calculation of the bulk and surface geometry of beryllium. , 1995, Physical review. B, Condensed matter.

[54]  K. Gschneidner Physical Properties and Interrelationships of Metallic and Semimetallic Elements , 1964 .

[55]  H. Imamura,et al.  Characterization and hydriding properties of Mg-graphite composites prepared by mechanical grinding as new hydrogen storage materials , 1997 .

[56]  V. Heine,et al.  The structure of barium in the hexagonal close-packed phase under high pressure , 1997 .

[57]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .

[58]  M. E. Mouhtadi,et al.  Electronic and structural properties of CaH2: an ab initio Hartree–Fock study , 2000 .

[59]  Hafner,et al.  Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. , 1994, Physical review. B, Condensed matter.

[60]  Theoretical and computational study of high-pressure structures in barium , 2000, Physical review letters.

[61]  T. Richardson,et al.  Calculation of thermodynamic, electronic, and optical properties of monoclinic Mg2NiH4 , 2002 .

[62]  L. Hector,et al.  Energetics of the Li amide/Li imide hydrogen storage reaction , 2005 .

[63]  N. Ohba,et al.  First-principles study on thermal vibration effects ofMgH2 , 2004 .

[64]  S. Zeng The Structure of Barium in the Hcp Phase under High Pressure , 2022 .

[65]  A. Załuska,et al.  Synergy of hydrogen sorption in ball-milled hydrides of Mg and Mg2Ni , 1999 .

[66]  G. Sandrock,et al.  Metallurgy of Rechargeable Hydrides , 1982 .

[67]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[68]  J.F.R. de Castro,et al.  Improving H-sorption in MgH2 powders by addition of nanoparticles of transition metal fluoride catalysts and mechanical alloying , 2005 .

[69]  W. Kołos,et al.  Accurate Electronic Wave Functions for the H 2 Molecule , 1960 .

[70]  Lin Chen,et al.  Alloying effects of transition metals on chemical bonding in magnesium hydride MgH2 , 2004 .

[71]  D. Guay,et al.  Hydrogen production and crystal structure of ball-milled MgH2–Ca and MgH2–CaH2 mixtures , 2004 .

[72]  F. Birch Finite Elastic Strain of Cubic Crystals , 1947 .

[73]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[74]  Wolf,et al.  Ab initio calculations of the cohesive, elastic, and dynamical properties of CoSi2 by pseudopotential and all-electron techniques. , 1996, Physical review. B, Condensed matter.

[75]  Jackson,et al.  Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. , 1992, Physical review. B, Condensed matter.

[76]  R. D. E. Bouzaidi,et al.  Elastic, electronic and crystal structure of SrH 2 by the method of pseudopotentials , 2000 .

[77]  An ab initio Hartree-Fock study of electronic and structural properties of MgH2 , 1994 .

[78]  Blöchl,et al.  Improved tetrahedron method for Brillouin-zone integrations. , 1994, Physical review. B, Condensed matter.

[79]  D. Pavone,et al.  The Preparation and Some Properties of Magnesium Hydride1 , 1955 .

[80]  H. A. Peretti,et al.  Vibrational spectrum of magnesium hydride , 2000 .

[81]  S. H. Vosko,et al.  Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis , 1980 .

[82]  J. Moriarty First-principles phonon spectra in Ca and Sr , 1983 .

[83]  A. Kheifets,et al.  Electronic band structure of magnesium and magnesium oxide: experiment and theory , 1999 .

[84]  Gerbrand Ceder,et al.  First-principles study of the stability and electronic structure of metal hydrides , 2002 .

[85]  Z. Guo,et al.  Influence of selected alloying elements on the stability of magnesium dihydride for hydrogen storage applications: A first-principles investigation , 2004 .

[86]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[87]  Georg Kresse,et al.  The Perdew-Burke-Ernzerhof exchange-correlation functional applied to the G2-1 test set using a plane-wave basis set. , 2005, The Journal of chemical physics.

[88]  Estela Blaisten-Barojas,et al.  Pressure induced transitions in calcium: a tight-binding approach , 2003 .

[89]  Suratna Das,et al.  Unified study of alkaline earth metal , 1987 .

[90]  A first principle pseudopotential calculation of the elastic shear constants of beryllium , 1968 .

[91]  H. Imamura Improved hydrogen storage by Mg and Mg−Nimodified by organic compounds , 1991 .

[92]  R. Snyder,et al.  The crystal and molecular structure of beryllium hydride , 1988 .

[93]  Ponniah Vajeeston,et al.  Structural stability of BeH2 at high pressures , 2004 .

[94]  D. Misemer,et al.  Lattice dynamics of fcc Ca , 1982 .

[95]  J. Gladden,et al.  Reconciliation of ab initio theory and experimental elastic properties of Al2O3 , 2004 .

[96]  G. Raynor The lattice spacings of the primary solid solutions of silver, cadmium and indium in magnesium , 1940, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[97]  W. Zachariasen,et al.  NEUTRON DIFFRACTION STUDY OF MAGNESIUM DEUTERIDE , 1963 .

[98]  V. Heine,et al.  Electronic structure of Ca, Sr, and Ba under pressure. , 1967 .