Can the Tully-Fisher Relation Be the Result of Initial Conditions?

We use Monte Carlo realizations of halo formation histories and a spherical accretion model to calculate the expected scatter in the velocity dispersions of galactic halos of a given mass due to differences in their formation times. Assuming that the rotational velocity of a spiral galaxy is determined by the velocity dispersion of its halo and that its luminosity is related to its total baryonic mass, this scatter translates to a minimum intrinsic scatter in the Tully-Fisher relation. For popular cosmological models we find that the scatter due to variations in formation histories is by itself greater than allowed by observations. Unless halos of spiral galaxies formed at high redshift (z ≳ 1) and did not later accrete any significant amount of mass, the TullyFisher relation is not likely to be the direct result of cosmological initial conditions but rather a consequence of a subsequent feedback process.

[1]  J. Prochaska,et al.  A Keck HIRES Investigation of the Metal Abundances and Kinematics of Three Damped Lyα Systems toward Q2206–199 , 1996, astro-ph/9605021.

[2]  C. Foltz,et al.  The Large Bright QSO Survey for Damped LY alpha Absorption Systems , 1995 .

[3]  S. Cole,et al.  The structure of dark matter haloes in hierarchical clustering models , 1995, astro-ph/9510147.

[4]  S. White,et al.  The Structure of cold dark matter halos , 1995, astro-ph/9508025.

[5]  H. Rix,et al.  Nonaxisymmetric structures in the stellar disks of galaxies , 1995, astro-ph/9505111.

[6]  C. Steidel,et al.  A critical analysis of interstellar Zn and Cr as galactic abundance benchmarks for quasar absorbers , 1995 .

[7]  G. Lake,et al.  On the Destruction and Overmerging of Dark Halos in Dissipationless N-Body Simulations , 1995, astro-ph/9503088.

[8]  J. Willick,et al.  The density and peculiar velocity fields of nearby galaxies , 1995, astro-ph/9502079.

[9]  K. Gorski,et al.  COBE DMR-normalized open inflation cold dark matter cosmogony , 1995, astro-ph/9502034.

[10]  M. Zwaan,et al.  The Tully-Fisher relation for low surface brightness galaxies: implications for galaxy evolution , 1995, astro-ph/9501102.

[11]  Bennett,et al.  Experimental limits on the dark matter halo of the galaxy from gravitational microlensing. , 1995, Physical review letters.

[12]  Turner,et al.  Microlensing and halo cold dark matter. , 1994, Physical review letters.

[13]  S. Faber,et al.  Homogeneous Velocity-Distance Data for Peculiar Velocity Analysis. I. Calibration of Cluster Samples , 1994, astro-ph/9411046.

[14]  D. Weinberg,et al.  Hydrodynamic Simulations of Galaxy Formation. I. Dissipation and the Maximum Mass of Galaxies , 1994, astro-ph/9410009.

[15]  D. Mathewson,et al.  Large-Scale Streaming Motions in the Local Universe , 1994 .

[16]  A. Sandage,et al.  Bias properties of extragalactic distance indicators. 3: Analysis of Tully-Fisher distances for the Mathewson-Ford-Buchhorn sample of 1355 galaxies , 1994 .

[17]  N. Vogt,et al.  Tests of the Tully-Fisher relation. 1. Scatter in infrared magnitude versus 21 cm width , 1994 .

[18]  S. White,et al.  Simulations of dissipative galaxy formation in hierarchically clustering universes – II. Dynamics of the baryonic component in galactic haloes , 1994 .

[19]  S. White,et al.  Accretion of satellite galaxies and the density of the Universe , 1994 .

[20]  H. Mendelson,et al.  Further photometry of LSI + 61°303 , 1994 .

[21]  S. Cole,et al.  Merger rates in hierarchical models of galaxy formation – II. Comparison with N-body simulations , 1994, astro-ph/9402069.

[22]  C. Frenk,et al.  A recipe for galaxy formation , 1994, astro-ph/9402001.

[23]  G. Kauffmann,et al.  The formation and evolution of galaxies within merging dark matter haloes , 1993 .

[24]  K. Lanzetta,et al.  EVOLUTION OF THE GASEOUS CONTENT OF THE UNIVERSE , 1993 .

[25]  S. White,et al.  The Correlation function of clusters of galaxies and the amplitude of mass fluctuations in the Universe , 1993, astro-ph/9602052.

[26]  S. D. M. White,et al.  The merging history of dark matter haloes in a hierarchical universe , 1993 .

[27]  J. Bond,et al.  COBE Background radiation anisotropies and large scale structure in the universe , 1992 .

[28]  M. Franx,et al.  Elongated Disks and the Scatter in the Tully-Fisher Relation , 1992 .

[29]  Jeremiah P. Ostriker,et al.  Galactic disks, infall, and the global value of Omega , 1992 .

[30]  J. R. Bond,et al.  Excursion set mass functions for hierarchical Gaussian fluctuations , 1991 .

[31]  S. M. Fall,et al.  Confirmation of Dust in Damped Lyman-Alpha Systems , 1991 .

[32]  K. Lanzetta,et al.  Damped Lyman-Alpha Absorption by Disk Galaxies with Large Redshifts. IV. More Intermediate-Resolution Spectroscopy , 1989 .

[33]  S. Cole,et al.  Biased clustering in the cold dark matter cosmogony , 1989 .

[34]  E. Salpeter,et al.  Galactic fountains and extended H I disks , 1988 .

[35]  J. Bregman,et al.  X-ray observations to detect hot coronae around galaxies , 1982 .

[36]  J. Huchra,et al.  The infrared luminosity/H I velocity-width relation and its application to the distance scale. , 1979 .

[37]  William H. Press,et al.  Formation of Galaxies and Clusters of Galaxies by Self-Similar Gravitational Condensation , 1974 .

[38]  L. Spitzer On a Possible Interstellar Galactic Corona. , 1956 .

[39]  G. Bernstein,et al.  The mass to light ratios of low surface brightness spiral galaxies: Clues from the Tully-Fisher relation , 1995 .

[40]  Giuseppina Fabbiano,et al.  X Rays From Normal Galaxies , 1989 .

[41]  J. Gunn,et al.  On the Infall of Matter into Clusters of Galaxies and Some Effects on Their Evolution , 1972 .