What are super-enhancers?

[1]  Gary D Bader,et al.  Enhancer hijacking activates GFI1 family oncogenes in medulloblastoma , 2014, Nature.

[2]  Adelina Rogowska-Wrzesinska,et al.  Transcription factor cooperativity in early adipogenic hotspots and super-enhancers. , 2014, Cell reports.

[3]  Sridhar Ramaswamy,et al.  Targeting transcription regulation in cancer with a covalent CDK7 inhibitor , 2014, Nature.

[4]  Britta A. M. Bouwman,et al.  A Single Oncogenic Enhancer Rearrangement Causes Concomitant EVI1 and GATA2 Deregulation in Leukemia , 2014, Cell.

[5]  Christopher J. Ott,et al.  An epigenetic mechanism of resistance to targeted therapy in T cell acute lymphoblastic leukemia , 2014, Nature Genetics.

[6]  A. Stark,et al.  Transcriptional enhancers: from properties to genome-wide predictions , 2014, Nature Reviews Genetics.

[7]  G. Morgan,et al.  Translocations at 8q24 juxtapose MYC with genes that harbor superenhancers resulting in overexpression and poor prognosis in myeloma patients , 2014, Blood Cancer Journal.

[8]  Neville E. Sanjana,et al.  Genome-Scale CRISPR-Cas9 Knockout Screening in Human Cells , 2014, Science.

[9]  Mark I. McCarthy,et al.  Pancreatic islet enhancer clusters enriched in type 2 diabetes risk–associated variants , 2013, Nature Genetics.

[10]  M. Lupien,et al.  Combinatorial effects of multiple enhancer variants in linkage disequilibrium dictate levels of gene expression to confer susceptibility to common traits , 2014, Genome research.

[11]  Junhui Ge,et al.  Human colorectal cancer-specific CCAT1-L lncRNA regulates long-range chromatin interactions at the MYC locus , 2014, Cell Research.

[12]  A. Visel,et al.  Rapid and Pervasive Changes in Genome-wide Enhancer Usage during Mammalian Development , 2013, Cell.

[13]  Ming Yu,et al.  Role of SWI/SNF in acute leukemia maintenance and enhancer-mediated Myc regulation , 2013, Genes & development.

[14]  Vishwanath R. Iyer,et al.  Widespread Misinterpretable ChIP-seq Bias in Yeast , 2013, PloS one.

[15]  Charles Y. Lin,et al.  Discovery and characterization of super-enhancer-associated dependencies in diffuse large B cell lymphoma. , 2013, Cancer cell.

[16]  R. Young,et al.  Super-Enhancers in the Control of Cell Identity and Disease , 2013, Cell.

[17]  Alexander van Oudenaarden,et al.  Highly expressed loci are vulnerable to misleading ChIP localization of multiple unrelated proteins , 2013, Proceedings of the National Academy of Sciences.

[18]  Stephen C. J. Parker,et al.  Chromatin stretch enhancer states drive cell-specific gene regulation and harbor human disease risk variants , 2013, Proceedings of the National Academy of Sciences.

[19]  Michael Q. Zhang,et al.  Epigenomic Analysis of Multilineage Differentiation of Human Embryonic Stem Cells , 2013, Cell.

[20]  David A. Orlando,et al.  Master Transcription Factors and Mediator Establish Super-Enhancers at Key Cell Identity Genes , 2013, Cell.

[21]  David A. Orlando,et al.  Selective Inhibition of Tumor Oncogenes by Disruption of Super-Enhancers , 2013, Cell.

[22]  Buhm Han,et al.  Chromatin marks identify critical cell types for fine mapping complex trait variants , 2012 .

[23]  Bradley E. Bernstein,et al.  Genome-wide Chromatin State Transitions Associated with Developmental and Environmental Cues , 2013, Cell.

[24]  James B. Brown,et al.  DNA regions bound at low occupancy by transcription factors do not drive patterned reporter gene expression in Drosophila , 2012, Proceedings of the National Academy of Sciences.

[25]  R. Mann,et al.  Disentangling the many layers of eukaryotic transcriptional regulation. , 2012, Annual review of genetics.

[26]  Shane J. Neph,et al.  Systematic Localization of Common Disease-Associated Variation in Regulatory DNA , 2012, Science.

[27]  Data production leads,et al.  An integrated encyclopedia of DNA elements in the human genome , 2012 .

[28]  Nathan C. Sheffield,et al.  The accessible chromatin landscape of the human genome , 2012, Nature.

[29]  E. Furlong,et al.  Transcription factors: from enhancer binding to developmental control , 2012, Nature Reviews Genetics.

[30]  P. Gregory,et al.  Controlling Long-Range Genomic Interactions at a Native Locus by Targeted Tethering of a Looping Factor , 2012, Cell.

[31]  Jason H. Moore,et al.  Epigenomic Enhancer Profiling Defines a Signature of Colon Cancer , 2012, Science.

[32]  E. Birney,et al.  A Transcription Factor Collective Defines Cardiac Cell Fate and Reflects Lineage History , 2012, Cell.

[33]  Martin Renqiang Min,et al.  An integrated encyclopedia of DNA elements in the human genome , 2012 .

[34]  S. Lowe,et al.  RNAi screen identifies Brd4 as a therapeutic target in acute myeloid leukaemia , 2011, Nature.

[35]  S. Robson,et al.  Inhibition of BET recruitment to chromatin as an effective treatment for MLL-fusion leukaemia , 2011, Nature.

[36]  M. Biggin Animal transcription networks as highly connected, quantitative continua. , 2011, Developmental cell.

[37]  Nathan C. Sheffield,et al.  Open chromatin defined by DNaseI and FAIRE identifies regulatory elements that shape cell-type identity. , 2011, Genome research.

[38]  P. Sandy,et al.  Targeting MYC dependence in cancer by inhibiting BET bromodomains , 2011, Proceedings of the National Academy of Sciences.

[39]  R. Young,et al.  BET Bromodomain Inhibition as a Therapeutic Strategy to Target c-Myc , 2011, Cell.

[40]  Timothy J. Durham,et al.  "Systematic" , 1966, Comput. J..

[41]  Ryan A. Flynn,et al.  A unique chromatin signature uncovers early developmental enhancers in humans , 2011, Nature.

[42]  M. Groudine,et al.  Functional and Mechanistic Diversity of Distal Transcription Enhancers , 2011, Cell.

[43]  R. Young,et al.  Histone H3K27ac separates active from poised enhancers and predicts developmental state , 2010, Proceedings of the National Academy of Sciences.

[44]  Jacques P. Bothma,et al.  Shadow Enhancers Foster Robustness of Drosophila Gastrulation , 2010, Current Biology.

[45]  David A. Orlando,et al.  Mediator and Cohesin Connect Gene Expression and Chromatin Architecture , 2010, Nature.

[46]  G. K. Davis,et al.  Phenotypic robustness conferred by apparently redundant transcriptional enhancers , 2010, Nature.

[47]  Karen L. Mohlke,et al.  A map of open chromatin in human pancreatic islets , 2010, Nature Genetics.

[48]  K. Struhl,et al.  Where Does Mediator Bind In Vivo? , 2009, PloS one.

[49]  A. Visel,et al.  ChIP-seq accurately predicts tissue-specific activity of enhancers , 2009, Nature.

[50]  A. Mortazavi,et al.  Genome-Wide Mapping of in Vivo Protein-DNA Interactions , 2007, Science.

[51]  Dustin E. Schones,et al.  High-Resolution Profiling of Histone Methylations in the Human Genome , 2007, Cell.

[52]  Nathaniel D. Heintzman,et al.  Distinct and predictive chromatin signatures of transcriptional promoters and enhancers in the human genome , 2007, Nature Genetics.

[53]  Joseph C. Pearson,et al.  Modulating Hox gene functions during animal body patterning , 2005, Nature Reviews Genetics.

[54]  J. Brady,et al.  The bromodomain protein Brd4 is a positive regulatory component of P-TEFb and stimulates RNA polymerase II-dependent transcription. , 2005, Molecular cell.

[55]  Tom Misteli,et al.  The double bromodomain protein Brd4 binds to acetylated chromatin during interphase and mitosis , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[56]  Erik Splinter,et al.  Looping and interaction between hypersensitive sites in the active beta-globin locus. , 2002, Molecular cell.

[57]  Xiangdong Fang,et al.  Locus control regions. , 2002, Blood.

[58]  Michael Carey,et al.  A mechanism for synergistic activation of a mammalian gene by GAL4 derivatives , 1990, Nature.

[59]  Tom Maniatis,et al.  Early and late periodic patterns of even skipped expression are controlled by distinct regulatory elements that respond to different spatial cues , 1989, Cell.

[60]  M. Levine,et al.  Autoregulatory and gap gene response elements of the even‐skipped promoter of Drosophila. , 1989, The EMBO journal.

[61]  G. Kollias,et al.  Position-independent, high-level expression of the human β-globin gene in transgenic mice , 1987, Cell.

[62]  W. J. Gehring,et al.  A conserved DNA sequence in homoeotic genes of the Drosophila Antennapedia and bithorax complexes , 1984, Nature.

[63]  W. S. Hayward,et al.  Activation of a translocated human c-myc gene by an enhancer in the immunoglobulin heavy-chain locus , 1984, Nature.

[64]  M. Neuberger Expression and regulation of immunoglobulin heavy chain gene transfected into lymphoid cells. , 1983, The EMBO journal.

[65]  S. Tonegawa,et al.  A tissue-specific transcription enhancer element is located in the major intron of a rearranged immunoglobulin heavy chain gene , 1983, Cell.

[66]  J. Banerji,et al.  A lymphocyte-specific cellular enhancer is located downstream of the joining region in immunoglobulin heavy chain genes , 1983, Cell.

[67]  P. Leder,et al.  Translocation of the c-myc gene into the immunoglobulin heavy chain locus in human Burkitt lymphoma and murine plasmacytoma cells. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[68]  J. Banerji,et al.  Expression of a β-globin gene is enhanced by remote SV40 DNA sequences , 1981, Cell.

[69]  E. Lewis A gene complex controlling segmentation in Drosophila , 1978, Nature.