A neuroattenuated ICP 34 . 5-deficient herpes simplex virus type 1 replicates in ependymal cells of the murine central nervous system

IP: 54.70.40.11 On: Sun, 30 Dec 2018 10:31:15 Journal of General Virology (1998), 79, 525–536. Printed in Great Britain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[1]  B. Roizman,et al.  The range and distribution of murine central nervous system cells infected with the gamma(1)34.5- mutant of herpes simplex virus 1 , 1997, Journal of virology.

[2]  J. Trojanowski,et al.  Selective Vulnerability of Mouse CNS Neurons to Latent Infection with a Neuroattenuated Herpes Simplex Virus-1 , 1996, The Journal of Neuroscience.

[3]  I. Mohr,et al.  A herpesvirus genetic element which affects translation in the absence of the viral GADD34 function. , 1996, The EMBO journal.

[4]  B. Roizman,et al.  Association of a M(r) 90,000 phosphoprotein with protein kinase PKR in cells exhibiting enhanced phosphorylation of translation initiation factor eIF-2 alpha and premature shutoff of protein synthesis after infection with gamma 134.5- mutants of herpes simplex virus 1. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[5]  J. Trojanowski,et al.  Therapy of experimental human brain tumors using a neuroattenuated herpes simplex virus mutant. , 1995, Laboratory investigation; a journal of technical methods and pathology.

[6]  R. Sapolsky,et al.  Herpes simplex virus vectors overexpressing the glucose transporter gene protect against seizure-induced neuron loss. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[7]  M. R. Bigio,et al.  The ependyma: A protective barrier between brain and cerebrospinal fluid , 1995 .

[8]  H. Sarnat Ependymal Reactions to Injury. A Review , 1995, Journal of neuropathology and experimental neurology.

[9]  C. Achim,et al.  Herpes simplex virus brainstem encephalitis in an AIDS patient. , 1995, Clinical neuropathology.

[10]  F. Gage,et al.  Isolation, characterization, and use of stem cells from the CNS. , 1995, Annual review of neuroscience.

[11]  S. Brown,et al.  ICP34.5 influences herpes simplex virus type 1 maturation and egress from infected cells in vitro. , 1994, The Journal of general virology.

[12]  B. Roizman,et al.  Differential response of human cells to deletions and stop codons in the gamma(1)34.5 gene of herpes simplex virus , 1994, Journal of virology.

[13]  S. Brown,et al.  Cell type and cell state determine differential in vitro growth of non-neurovirulent ICP34.5-negative herpes simplex virus types 1 and 2. , 1994, The Journal of general virology.

[14]  S. Brown,et al.  The herpes simplex virus type 1 strain 17+ γ34.5 deletion mutant 1716 is avirulent in SCID mice , 1994 .

[15]  B. Roizman,et al.  Herpes simplex virus 1 gamma(1)34.5 gene function, which blocks the host response to infection, maps in the homologous domain of the genes expressed during growth arrest and DNA damage. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[16]  S. Brown,et al.  Characterization of the herpes simplex virus type 1 strain 17+ neurovirulence gene RL1 and its expression in a bacterial system. , 1994, The Journal of general virology.

[17]  S. Deshmane,et al.  A thymidine kinase-negative HSV-1 strain establishes a persistent infection in SCID mice that features uncontrolled peripheral replication but only marginal nervous system involvement. , 1994, Virology.

[18]  J. Trojanowski,et al.  In vivo and in vitro models of medulloblastomas and other primitive neuroectodermal brain tumors of childhood , 1994, Molecular and chemical neuropathology.

[19]  N. Fraser,et al.  Viral, neuronal and immune factors which may influence herpes simplex virus (HSV) latency and reactivation. , 1993, Microbial pathogenesis.

[20]  J. Trojanowski,et al.  Neurons Derived from a Human Teratocarcinoma Cell Line Establish Molecular and Structural Polarity Following Transplantation into the Rodent Brain , 1993, Experimental Neurology.

[21]  S. Deshmane,et al.  Herpes simplex virus type 1 mutant strain in1814 establishes a unique, slowly progressing infection in SCID mice , 1992, Journal of virology.

[22]  T. Block,et al.  The latency-associated transcripts of herpes simplex virus: RNA in search of function. , 1992, Virology.

[23]  D. Tscharke,et al.  Anti-CD8 impairs clearance of herpes simplex virus from the nervous system: implications for the fate of virally infected neurons , 1992, The Journal of experimental medicine.

[24]  B. Roizman,et al.  The gamma 1(34.5) gene of herpes simplex virus 1 precludes neuroblastoma cells from triggering total shutoff of protein synthesis characteristic of programed cell death in neuronal cells. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[25]  S. Weiss,et al.  Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. , 1992, Science.

[26]  D. McGeoch,et al.  Comparative sequence analysis of the long repeat regions and adjoining parts of the long unique regions in the genomes of herpes simplex viruses types 1 and 2. , 1991, The Journal of general virology.

[27]  D M Coen,et al.  Experimental therapy of human glioma by means of a genetically engineered virus mutant , 1991, Science.

[28]  B. D. de Galan,et al.  Expression of herpes simplex virus type 2 latency-associated transcript in neurons and nonneurons , 1991, Journal of virology.

[29]  S. Brown,et al.  Herpes simplex virus type 1 deletion variants 1714 and 1716 pinpoint neurovirulence-related sequences in Glasgow strain 17+ between immediate early gene 1 and the 'a' sequence. , 1991, The Journal of general virology.

[30]  S. Deshmane,et al.  Investigation of herpes simplex virus type 1 (HSV-1) gene expression and DNA synthesis during the establishment of latent infection by an HSV-1 mutant, in1814, that does not replicate in mouse trigeminal ganglia. , 1991, The Journal of general virology.

[31]  D. McGeoch,et al.  Neurovirulence factor , 1991, Nature.

[32]  B. Roizman,et al.  Mapping of herpes simplex virus-1 neurovirulence to gamma 134.5, a gene nonessential for growth in culture. , 1990, Science.

[33]  D. Graham,et al.  The JH2604 deletion variant of herpes simplex virus type 2 (HG52) fails to produce necrotizing encephalitis following intracranial inoculation of mice. , 1990, The Journal of general virology.

[34]  J. Glorioso,et al.  Characterization of encephalitis in adult mice induced by intracerebral inoculation of herpes simplex virus type 1 (KOS) and comparison with mutants showing decreased virulence. , 1989, Laboratory investigation; a journal of technical methods and pathology.

[35]  E. Lavi,et al.  Latent herpes simplex virus type 1 transcripts in peripheral and central nervous system tissues of mice map to similar regions of the viral genome , 1988, Journal of virology.

[36]  N. Fraser,et al.  Detection of herpes simplex virus type 1 transcripts during latent infection in mice , 1987, Journal of virology.

[37]  S. Morgello,et al.  Concomitant herpes simplex virus type 1 and cytomegalovirus ventriculoencephalitis in acquired immunodeficiency syndrome. , 1987, Archives of neurology.

[38]  D. Springall,et al.  The immunocytochemical detection of Herpes simplex virus in cervical smears—a valuable technique for routine use , 1984, The Journal of pathology.

[39]  C. Preston,et al.  Activation of cellular stress protein genes by herpes simplex virus temperature-sensitive mutants which overproduce immediate early polypeptides. , 1982, Virology.

[40]  B. Roizman,et al.  Dna restriction-enzyme analysis of herpes simplex virus isolates obtained from patients with encephalitis. , 1982, The New England journal of medicine.

[41]  S. Soong,et al.  Herpes Simplex Encephalitis: Clinical Assessment , 1982 .

[42]  E. Petersen,et al.  Herpes simplex viruses. , 2009 .

[43]  R T Johnson,et al.  Hydrocephalus and Viral Infections , 1975, Developmental medicine and child neurology.

[44]  B. Roizman,et al.  Regulation of herpesvirus macromolecular synthesis: sequential transition of polypeptide synthesis requires functional viral polypeptides. , 1975, Proceedings of the National Academy of Sciences of the United States of America.

[45]  B. Roizman,et al.  Regulation of Herpesvirus Macromolecular Synthesis I. Cascade Regulation of the Synthesis of Three Groups of Viral Proteins , 1974, Journal of virology.

[46]  R. Johnson,et al.  Granular ependymitis. Occurrence in myxovirus infected rodents and prevalence in man. , 1972, The American journal of pathology.

[47]  L. Weiner,et al.  Viral Infections of the Nervous System , 1984, Neurology.

[48]  R. Johnson Chronic infectious neuropathic agents: possible mechanisms of pathogenesis. , 1967, Current topics in microbiology and immunology.

[49]  V. Herout,et al.  Herpes simplex encephalitis. , 1966, Neuropatologia polska.