Signal-level Fusion for Indexing and Retrieval of Facial Biometric Data

The growing scope, scale, and number of biometric deployments around the world emphasise the need for research into technologies facilitating efficient and reliable biometric identification queries. This work presents a method of indexing biometric databases, which relies on signal-level fusion of facial images (morphing) to create a multi-stage data-structure and retrieval protocol. By successively pre-filtering the list of potential candidate identities, the proposed method makes it possible to reduce the necessary number of biometric template comparisons to complete a biometric identification transaction. The proposed method is extensively evaluated on publicly available databases using open-source and commercial off-the-shelf recognition systems. The results show that using the proposed method, the computational workload can be reduced down to around 30%, while the biometric performance of a baseline exhaustive searchbased retrieval is fully maintained, both in closed-set and open-set identification scenarios.

[1]  Hyeonjoon Moon,et al.  The FERET Evaluation Methodology for Face-Recognition Algorithms , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[2]  Davide Maltoni,et al.  On the Effects of Image Alterations on Face Recognition Accuracy , 2016, Face Recognition Across the Imaging Spectrum.

[3]  Christoph Busch,et al.  Benchmarking Binarisation Schemes for Deep Face Templates , 2018, 2018 25th IEEE International Conference on Image Processing (ICIP).

[4]  Christoph Busch,et al.  Bloom filter-based search structures for indexing and retrieving iris-codes , 2017, IET Biom..

[5]  Andrew Zisserman,et al.  Deep Face Recognition , 2015, BMVC.

[6]  Christoph Busch,et al.  Database Binning and Retrieval in Multi-Fingerprint Identification Systems , 2018, 2018 IEEE International Workshop on Information Forensics and Security (WIFS).

[7]  Naser Damer,et al.  MorGAN: Recognition Vulnerability and Attack Detectability of Face Morphing Attacks Created by Generative Adversarial Network , 2018, 2018 IEEE 9th International Conference on Biometrics Theory, Applications and Systems (BTAS).

[8]  Kim-Sau Chung,et al.  On the Existence of Stable Roommate Matchings , 2000, Games Econ. Behav..

[9]  Kevin W. Bowyer,et al.  Iris recognition technology evaluated for voter registration in Somaliland , 2015 .

[10]  Boris G. Pittel,et al.  An Upper Bound for the Solvability Probability of a Random Stable Roommates Instance , 2006 .

[11]  Robert W. Irving,et al.  An Upper Bound for the Solvability of a Random Stable Roommates Instance , 1994, Random Struct. Algorithms.

[12]  Ilaiah Kavati,et al.  Search Space Reduction in Biometric Databases: A Review , 2017 .

[13]  Christoph Busch,et al.  Binarization of spectral histogram models: An application to efficient biometric identification , 2015, 2015 IEEE 2nd International Conference on Cybernetics (CYBCONF).

[14]  Kiran B. Raja,et al.  On the vulnerability of face recognition systems towards morphed face attacks , 2017, 2017 5th International Workshop on Biometrics and Forensics (IWBF).

[15]  Christian Rathgeb,et al.  Efficient two-stage speaker identification based on universal background models , 2014, 2014 International Conference of the Biometrics Special Interest Group (BIOSIG).

[16]  Sistema político,et al.  Unique Identification Authority of India , 2011 .

[17]  Christoph Busch,et al.  Computational workload in biometric identification systems: an overview , 2019, IET Biom..

[18]  Juan J. Igarza,et al.  MCYT baseline corpus: a bimodal biometric database , 2003 .

[19]  Patrick J. Flynn,et al.  Overview of the face recognition grand challenge , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[20]  J. Olsen,et al.  The European Commission , 2020, The European Union.

[21]  Davide Maltoni,et al.  On the Feasibility of Creating Double-Identity Fingerprints , 2017, IEEE Transactions on Information Forensics and Security.

[22]  Nalini Ratha,et al.  An efficient, two-stage iris recognition system , 2009, 2009 IEEE 3rd International Conference on Biometrics: Theory, Applications, and Systems.

[23]  James Philbin,et al.  FaceNet: A unified embedding for face recognition and clustering , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[24]  Davide Maltoni,et al.  The magic passport , 2014, IEEE International Joint Conference on Biometrics.

[25]  Stefanos Zafeiriou,et al.  ArcFace: Additive Angular Margin Loss for Deep Face Recognition , 2018, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[26]  Ajay Kumar,et al.  Comparison and combination of iris matchers for reliable personal authentication , 2010, Pattern Recognit..

[27]  Marwan Mattar,et al.  Labeled Faces in the Wild: A Database forStudying Face Recognition in Unconstrained Environments , 2008 .

[28]  Phalguni Gupta,et al.  Indexing Multimodal Biometric Databases Using Kd-Tree with Feature Level Fusion , 2008, ICISS.

[29]  Christoph Busch,et al.  On the feasibility of creating morphed iris-codes , 2017, 2017 IEEE International Joint Conference on Biometrics (IJCB).

[30]  Jean-Luc Dugelay,et al.  Recent Advances in Biometric Technology for Mobile Devices , 2018, 2018 IEEE 9th International Conference on Biometrics Theory, Applications and Systems (BTAS).

[31]  Arun Ross,et al.  A Comprehensive Overview of Biometric Fusion , 2019, Inf. Fusion.

[32]  Christoph Busch,et al.  Turning a Vulnerability into an Asset: Accelerating Facial Identification with Morphing , 2019, ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[33]  Arun Ross,et al.  A coding scheme for indexing multimodal biometric databases , 2009, 2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops.

[34]  Hyeonjoon Moon,et al.  The FERET evaluation methodology for face-recognition algorithms , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[35]  Christoph Busch,et al.  Multi-iris indexing and retrieval: Fusion strategies for bloom filter-based search structures , 2017, 2017 IEEE International Joint Conference on Biometrics (IJCB).

[36]  Naser Damer,et al.  To Detect or not to Detect: The Right Faces to Morph , 2019, 2019 International Conference on Biometrics (ICB).

[37]  Lavinia Mihaela Dinca,et al.  The Fall of One, the Rise of Many A Survey on Multi-Biometric Fusion Methods , 2017 .

[38]  Role of Biometric Technology in Aadhaar Enrollment , 2012 .

[39]  Harold W. Kuhn,et al.  The Hungarian method for the assignment problem , 1955, 50 Years of Integer Programming.

[40]  Christoph Busch,et al.  Multi-Biometric Identification With Cascading Database Filtering , 2020, IEEE Transactions on Biometrics, Behavior, and Identity Science.

[41]  Touradj Ebrahimi,et al.  Using face morphing to protect privacy , 2013, 2013 10th IEEE International Conference on Advanced Video and Signal Based Surveillance.

[42]  Davis E. King,et al.  Dlib-ml: A Machine Learning Toolkit , 2009, J. Mach. Learn. Res..

[43]  Christian Gehrmann,et al.  Metadata filtering for user-friendly centralized biometric authentication , 2019, EURASIP J. Inf. Secur..

[44]  George Wolberg,et al.  Image morphing: a survey , 1998, The Visual Computer.

[45]  Mohamed Elhoseny,et al.  Cascade Multimodal Biometric System Using Fingerprint and Iris Patterns , 2017, AISI.

[46]  John Daugman,et al.  Biometric decision landscapes , 2000 .

[47]  Christoph Busch,et al.  Face Recognition Systems Under Morphing Attacks: A Survey , 2019, IEEE Access.

[48]  Tanuj Kanchan,et al.  The Fingerprint Sourcebook , 2012 .

[49]  H. Kuhn The Hungarian method for the assignment problem , 1955 .

[50]  Joel Nothman,et al.  SciPy 1.0-Fundamental Algorithms for Scientific Computing in Python , 2019, ArXiv.

[51]  Ira Kemelmacher-Shlizerman,et al.  The MegaFace Benchmark: 1 Million Faces for Recognition at Scale , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[52]  Andreas Wolf,et al.  An Overview of Recent Advances in Assessing and Mitigating the Face Morphing Attack , 2018, 2018 26th European Signal Processing Conference (EUSIPCO).

[53]  Arun Ross,et al.  What Else Does Your Biometric Data Reveal? A Survey on Soft Biometrics , 2016, IEEE Transactions on Information Forensics and Security.

[54]  Christoph Busch,et al.  Finding the Suitable Doppelgänger for a Face Morphing Attack , 2020, 2020 IEEE International Joint Conference on Biometrics (IJCB).

[55]  Ogechukwu N. Iloanusi Fusion of finger types for fingerprint indexing using minutiae quadruplets , 2014, Pattern Recognit. Lett..

[56]  Arun Ross,et al.  Index Codes for Multibiometric Pattern Retrieval , 2012, IEEE Transactions on Information Forensics and Security.