High dimensional finite elements for time-space multiscale parabolic equations
暂无分享,去创建一个
[1] Yalchin Efendiev,et al. Generalized multiscale finite element methods for space-time heterogeneous parabolic equations , 2016, Comput. Math. Appl..
[2] Viet Ha Hoang,et al. Sparse tensor finite elements for elastic wave equation with multiple scales , 2015, J. Comput. Appl. Math..
[3] Doina Cioranescu,et al. The Periodic Unfolding Method in Homogenization , 2008, SIAM J. Math. Anal..
[4] Yalchin Efendiev,et al. Generalized multiscale finite element methods (GMsFEM) , 2013, J. Comput. Phys..
[5] Assyr Abdulle,et al. Coupling heterogeneous multiscale FEM with Runge-Kutta methods for parabolic homogenization problems: a fully discrete space-time analysis , 2012 .
[6] J. Douglas,et al. Galerkin Methods for Parabolic Equations , 1970 .
[7] Assyr Abdulle,et al. Finite element heterogeneous multiscale method for nonlinear monotone parabolic homogenization problems , 2016 .
[8] Thomas Y. Hou,et al. A Multiscale Finite Element Method for Elliptic Problems in Composite Materials and Porous Media , 1997 .
[9] J. Lions,et al. Non-homogeneous boundary value problems and applications , 1972 .
[10] Nils Svanstedt,et al. Multiscale convergence and reiterated homogenization of parabolic problems , 2005 .
[11] J. Wloka,et al. Partial differential equations , 1987 .
[12] J. Wloka,et al. Partial differential equations: Strongly elliptic differential operators and the method of variations , 1987 .
[13] Yalchin Efendiev,et al. Multiscale Finite Element Methods: Theory and Applications , 2009 .
[14] Michael Griebel,et al. Tensor product type subspace splittings and multilevel iterative methods for anisotropic problems , 1995, Adv. Comput. Math..
[15] Periodic homogenization of nonlinear non-monotone parabolic operators with three time scales , 2010 .
[16] E Weinan,et al. The Heterogeneous Multiscale Method Based on the Discontinuous Galerkin Method for Hyperbolic and Parabolic Problems , 2005, Multiscale Model. Simul..
[17] G. Allaire. Homogenization and two-scale convergence , 1992 .
[18] Zhongwei Shen,et al. Convergence Rates in Parabolic Homogenization with Time-Dependent Periodic Coefficients , 2016, 1604.06735.
[19] E Weinan,et al. The heterogeneous multiscale method* , 2012, Acta Numerica.
[20] Bingxing Xia,et al. High-dimensional finite element method for multiscale linear elasticity , 2015 .
[21] G. Nguetseng. A general convergence result for a functional related to the theory of homogenization , 1989 .
[22] Houman Owhadi,et al. Homogenization of Parabolic Equations with a Continuum of Space and Time Scales , 2007, SIAM J. Numer. Anal..
[23] Anna Persson,et al. Multiscale techniques for parabolic equations , 2015, Numerische Mathematik.
[24] Hans-Joachim Bungartz,et al. Acta Numerica 2004: Sparse grids , 2004 .
[25] Christoph Schwab,et al. High-Dimensional Finite Elements for Elliptic Problems with Multiple Scales , 2005, Multiscale Modeling & simulation.
[26] Christoph Schwab,et al. Sparse Tensor Discretization of Elliptic sPDEs , 2009, SIAM J. Sci. Comput..
[27] Pingwen Zhang,et al. Analysis of the heterogeneous multiscale method for parabolic homogenization problems , 2007, Math. Comput..
[28] Daniel Peterseim,et al. Localization of elliptic multiscale problems , 2011, Math. Comput..
[29] Yalchin Efendiev,et al. Numerical Homogenization of Nonlinear Random Parabolic Operators , 2004, Multiscale Model. Simul..
[30] Vladimir A. Kazeev,et al. QTT-finite-element approximation for multiscale problems I: model problems in one dimension , 2017, Adv. Comput. Math..
[31] Viet Ha Hoang,et al. High dimensional finite element method for multiscale nonlinear monotone parabolic equations , 2019, J. Comput. Appl. Math..
[32] V. H. Hoang,et al. High dimensional finite elements for multiscale Maxwell wave equations , 2017, 1708.01966.
[33] Viet Ha Hoang,et al. High Dimensional Finite Elements for Multiscale Wave Equations , 2014, Multiscale Model. Simul..