High dimensional finite elements for time-space multiscale parabolic equations

The paper develops the essentially optimal sparse tensor product finite element method for a parabolic equation in a domain in ℝd$\mathbb {R}^{d}$ which depends on a microscopic scale in space and a microscopic scale in time. We consider the critical self similar case which has the most interesting homogenization limit. We solve the high dimensional time-space multiscale homogenized equation, which provides the solution to the homogenized equation which describes the multiscale equation macroscopically, and the corrector which encodes the microscopic information. For obtaining an approximation within a prescribed accuracy, the method requires an essentially optimal number of degrees of freedom that is essentially equal to that for solving a macroscopic parabolic equation in a domain in ℝd$\mathbb {R}^{d}$. A numerical corrector is deduced from the finite element solution. Numerical examples for one and two dimensional problems confirm the theoretical results. Although the theory is developed for problems with one spatial microscopic scale, we show numerically that the method is capable of solving problems with more than one spatial microscopic scale.

[1]  Yalchin Efendiev,et al.  Generalized multiscale finite element methods for space-time heterogeneous parabolic equations , 2016, Comput. Math. Appl..

[2]  Viet Ha Hoang,et al.  Sparse tensor finite elements for elastic wave equation with multiple scales , 2015, J. Comput. Appl. Math..

[3]  Doina Cioranescu,et al.  The Periodic Unfolding Method in Homogenization , 2008, SIAM J. Math. Anal..

[4]  Yalchin Efendiev,et al.  Generalized multiscale finite element methods (GMsFEM) , 2013, J. Comput. Phys..

[5]  Assyr Abdulle,et al.  Coupling heterogeneous multiscale FEM with Runge-Kutta methods for parabolic homogenization problems: a fully discrete space-time analysis , 2012 .

[6]  J. Douglas,et al.  Galerkin Methods for Parabolic Equations , 1970 .

[7]  Assyr Abdulle,et al.  Finite element heterogeneous multiscale method for nonlinear monotone parabolic homogenization problems , 2016 .

[8]  Thomas Y. Hou,et al.  A Multiscale Finite Element Method for Elliptic Problems in Composite Materials and Porous Media , 1997 .

[9]  J. Lions,et al.  Non-homogeneous boundary value problems and applications , 1972 .

[10]  Nils Svanstedt,et al.  Multiscale convergence and reiterated homogenization of parabolic problems , 2005 .

[11]  J. Wloka,et al.  Partial differential equations , 1987 .

[12]  J. Wloka,et al.  Partial differential equations: Strongly elliptic differential operators and the method of variations , 1987 .

[13]  Yalchin Efendiev,et al.  Multiscale Finite Element Methods: Theory and Applications , 2009 .

[14]  Michael Griebel,et al.  Tensor product type subspace splittings and multilevel iterative methods for anisotropic problems , 1995, Adv. Comput. Math..

[15]  Periodic homogenization of nonlinear non-monotone parabolic operators with three time scales , 2010 .

[16]  E Weinan,et al.  The Heterogeneous Multiscale Method Based on the Discontinuous Galerkin Method for Hyperbolic and Parabolic Problems , 2005, Multiscale Model. Simul..

[17]  G. Allaire Homogenization and two-scale convergence , 1992 .

[18]  Zhongwei Shen,et al.  Convergence Rates in Parabolic Homogenization with Time-Dependent Periodic Coefficients , 2016, 1604.06735.

[19]  E Weinan,et al.  The heterogeneous multiscale method* , 2012, Acta Numerica.

[20]  Bingxing Xia,et al.  High-dimensional finite element method for multiscale linear elasticity , 2015 .

[21]  G. Nguetseng A general convergence result for a functional related to the theory of homogenization , 1989 .

[22]  Houman Owhadi,et al.  Homogenization of Parabolic Equations with a Continuum of Space and Time Scales , 2007, SIAM J. Numer. Anal..

[23]  Anna Persson,et al.  Multiscale techniques for parabolic equations , 2015, Numerische Mathematik.

[24]  Hans-Joachim Bungartz,et al.  Acta Numerica 2004: Sparse grids , 2004 .

[25]  Christoph Schwab,et al.  High-Dimensional Finite Elements for Elliptic Problems with Multiple Scales , 2005, Multiscale Modeling & simulation.

[26]  Christoph Schwab,et al.  Sparse Tensor Discretization of Elliptic sPDEs , 2009, SIAM J. Sci. Comput..

[27]  Pingwen Zhang,et al.  Analysis of the heterogeneous multiscale method for parabolic homogenization problems , 2007, Math. Comput..

[28]  Daniel Peterseim,et al.  Localization of elliptic multiscale problems , 2011, Math. Comput..

[29]  Yalchin Efendiev,et al.  Numerical Homogenization of Nonlinear Random Parabolic Operators , 2004, Multiscale Model. Simul..

[30]  Vladimir A. Kazeev,et al.  QTT-finite-element approximation for multiscale problems I: model problems in one dimension , 2017, Adv. Comput. Math..

[31]  Viet Ha Hoang,et al.  High dimensional finite element method for multiscale nonlinear monotone parabolic equations , 2019, J. Comput. Appl. Math..

[32]  V. H. Hoang,et al.  High dimensional finite elements for multiscale Maxwell wave equations , 2017, 1708.01966.

[33]  Viet Ha Hoang,et al.  High Dimensional Finite Elements for Multiscale Wave Equations , 2014, Multiscale Model. Simul..