Origin of felsic achondrites Graves Nunataks 06128 and 06129, and ultramafic brachinites and brachinite-like achondrites by partial melting of volatile-rich primitive parent bodies
暂无分享,去创建一个
L. Taylor | R. Ash | W. McDonough | K. Tait | R. Walker | Yang Liu | J. Day | C. Goodrich | D. Rumble | A. Irving
[1] Bernard H. Foing,et al. Lunar and Planetary Science Conference , 2013 .
[2] L. Garvie. The Meteoritical Bulletin, No. 99, April 2012* , 2012 .
[3] Q. Yin,et al. Constraining the Age of Partial Melting on the Brachinite Parent Body by Investigating Al-Mg Systematics in Brachina and Paired Achondrites GRA06128/9 , 2011 .
[4] J. Zipfel,et al. The Northwest Africa 1500 meteorite: Not a ureilite, maybe a brachinite , 2010 .
[5] John H. Jones,et al. Experimental Study of the Felsic Asteroidal Crust Formation Recorded in GRA 06128 and GRA 06129 , 2010 .
[6] J. Day,et al. Constraints on the Formation Age, Highly Siderophile Element Budget and Noble Gas Isotope Compositions of Northwest Africa 5400: An Ultramafic Achondrite with Terrestrial Isotopic Characteristics , 2010 .
[7] John H. Jones,et al. Low-Degree Partial Melting Experiments of CR and H Chondrite Compositions: Implications for Asteroidal Magmatism Recorded in GRA 06128 and GRA 06129 T , 2010 .
[8] B. Weiss,et al. Non-basaltic asteroidal magmatism during the earliest stages of solar system evolution: A view from Antarctic achondrites Graves Nunatak 06128 and 06129 , 2010 .
[9] R. Walker,et al. Osmium isotope and highly siderophile element systematics of the lunar crust , 2010 .
[10] H. Becker,et al. Rhodium, gold and other highly siderophile element abundances in chondritic meteorites , 2010 .
[11] K. Keil. Enstatite achondrite meteorites (aubrites) and the histories of their asteroidal parent bodies , 2010 .
[12] L. Taylor,et al. Sulfide inclusions in diamonds: not monosulfide solid solution , 2009 .
[13] R. Walker,et al. Highly siderophile element evidence for early solar system processes in components from ordinary chondrites , 2009 .
[14] L. Taylor,et al. The role of volatiles during asteroidal differentiation , 2009 .
[15] L. Taylor,et al. Day et al. reply , 2009, Nature.
[16] T. Hiroi,et al. Searching for the Evolved Crust of Oxidized Asteroids , 2009 .
[17] L. Taylor,et al. Early formation of evolved asteroidal crust , 2009, Nature.
[18] D. Rumble,et al. ULTRAMAFIC ACHONDRITE NORTHWEST AFRICA 5400: A UNIQUE BRACHINITE-LIKE METEORITE WITH TERRESTRIAL OXYGEN ISOTOPIC COMPOSITION. A. J. Irving , 2009 .
[19] L. Nyquist,et al. Early Petrogenesis and Late Impact(?) Metamorphism on the GRA 06128/9 Parent Body , 2009 .
[20] I. Franchi,et al. Geochemistry of diogenites: Still more diversity in their parental melts , 2008 .
[21] M. Humayun,et al. Highly siderophile elements in ureilites , 2008 .
[22] D. Pearson,et al. Rhenium–Osmium Isotope and Platinum-Group Element Constraints on the Origin and Evolution of the 1·27 Ga Muskox Layered Intrusion , 2008 .
[23] Nancy L. Chabot,et al. Modeling fractional crystallization of group IVB iron meteorites , 2008 .
[24] T. Bunch,et al. Oxygen Isotopic and Petrological Diversity Among Brachinites NWA 4872, NWA 4874, NWA 4882 and NWA 4969: How Many Ancient Parent Bodies? , 2008 .
[25] K. Saiki,et al. Unique Achondrites GRA 06128/06129: Andesitic Partial Melt from a Volatile-rich Parent Body , 2008 .
[26] K. Righter,et al. The Meteoritical Bulletin, No. 93, 2008 March , 2008 .
[27] R. Korotev,et al. Petrology, Geochemistry, and Likely Provenance of Unique Achondrite Graves Nunataks 06128 , 2008 .
[28] T. Mikouchi,et al. Mineralogy and Pyroxene Cooling Rate of Unique Achondritic Meteorite GRA 06129 , 2008 .
[29] I. Franchi,et al. Oxygen three-isotope fractionation lines in terrestrial silicate minerals: An inter-laboratory comparison of hydrothermal quartz and eclogitic garnet , 2007 .
[30] L. Wilson,et al. Fractional melting and smelting on the ureilite parent body , 2007 .
[31] A. Rubin. Petrogenesis of acapulcoites and lodranites : A shock-melting model , 2007 .
[32] J. Sunshine,et al. Olivine‐dominated asteroids and meteorites: Distinguishing nebular and igneous histories , 2007 .
[33] L. Taylor,et al. Oxygen isotope constraints on the origin and differentiation of the Moon , 2007 .
[34] L. Taylor,et al. Highly Siderophile Element Constraints on Accretion and Differentiation of the Earth-Moon System , 2007, Science.
[35] John H. Jones,et al. Petrography and Origin of the Unique Achondrite GRA 06128 and 06129: Preliminary Results , 2007 .
[36] C. Floss,et al. Evolved mare basalt magmatism, high Mg/Fe feldspathic crust, chondritic impactors, and the petrogenesis of Antarctic lunar breccia meteorites Meteorite Hills 01210 and Pecora Escarpment 02007 , 2006 .
[37] M. Humayun,et al. Osmium isotope systematics of ureilites , 2006 .
[38] John M. Hughes,et al. Crystal chemistry of lunar merrillite and comparison to other meteoritic and planetary suites of whitlockite and merrillite , 2006 .
[39] R. Walker,et al. Highly siderophile element composition of the Earth’s primitive upper mantle: Constraints from new data on peridotite massifs and xenoliths , 2006 .
[40] C. Goodrich,et al. Northwest Africa 1500: Plagioclase‐bearing monomict ureilite or ungrouped achondrite? , 2006 .
[41] G. Kallemeyn,et al. Siderophile geochemistry of ureilites : A record of early stages of planetesimal core formation , 2006 .
[42] D. W. Schnare,et al. Comparative petrology, geochemistry, and petrogenesis of evolved, low-Ti lunar mare basalt meteorites from the LaPaz Icefield, Antarctica , 2006 .
[43] D. Rumble,et al. Oxygen Isotopes in Brachina, SAH 99555 and Northwest Africa 1054 , 2006 .
[44] D. Mittlefehldt,et al. Asteroid Differentiation , 2006 .
[45] D. Rumble,et al. Brachinite NWA 3151 and (?)Brachinite NWA 595 , 2005 .
[46] A. Jambon,et al. Widespread magma oceans on asteroidal bodies in the early Solar System , 2005, Nature.
[47] C. Floss,et al. Northwest Africa 011: A “eucritic” basalt from a non‐eucrite parent body , 2005 .
[48] R. Ash,et al. Re-187-Os-187, Pt-190-Os-186 Isotopic and Highly Siderophile Element Systematics of Group IVA Irons , 2005 .
[49] E. Scott,et al. Ureilitic breccias: clues to the petrologic structure and impact disruption of the ureilite parent asteroid , 2004 .
[50] K. Keil,et al. Feldspathic clast populations in polymict ureilites: Stalking the missing basalts from the ureilite parent body , 2004 .
[51] J. Morgan,et al. Pt-Re-Os systematics of group IIAB and IIIAB iron meteorites , 2004 .
[52] Timothy H. McConnochie,et al. E‐type asteroid spectroscopy and compositional modeling , 2004 .
[53] K. Righter. METAL-SILICATE PARTITIONING OF SIDEROPHILE ELEMENTS AND CORE FORMATION IN THE EARLY EARTH* , 2003 .
[54] D. Mittlefehldt,et al. Brachinites: Igneous rocks from a differentiated asteroid , 2003 .
[55] J. Morgan,et al. Highly siderophile elements in chondrites , 2003 .
[56] John H. Jones,et al. Signatures of the highly siderophile elements in the SNC meteorites and Mars: a review and petrologic synthesis , 2003 .
[57] John H. Jones,et al. The parameterization of solid metal‐liquid metal partitioning of siderophile elements , 2003 .
[58] J. Morgan,et al. Comparative 187Re-187Os systematics of chondrites: Implications regarding early solar system processes , 2002 .
[59] M. F. Miller. Isotopic fractionation and the quantification of 17O anomalies in the oxygen three-isotope system: an appraisal and geochemical significance , 2002 .
[60] R. Clayton,et al. A New Source of Basaltic Meteorites Inferred from Northwest Africa 011 , 2002, Science.
[61] Michael T. Lee,et al. Petrology and geochemistry of D'Orbigny, geochemistry of Sahara 99555, and the origin of angrites , 2002 .
[62] R. Jones,et al. Disequilibrium partial melting experiments on the Leedey L6 chondrite: Textural controls on melting processes , 2001 .
[63] M. Prinz,et al. Magmatic inclusions and felsic clasts in the Dar al Gani 319 polymict ureilite , 2001 .
[64] C. Floss. Complexities on the acapulcoite‐lodranite parent body: Evidence from trace element distributions in silicate minerals , 2000 .
[65] D. Mittlefehldt,et al. Mineralogy, petrology, chemistry, and 39Ar-40Ar and exposure ages of the Caddo County IAB iron: evidence for early partial melt segregation of a gabbro area rich in plagioclase-diopside , 2000 .
[66] R. Clayton,et al. Zag (b): A Ferroan Achondrite Intermediate Between Brachinites and Lodranites , 2000 .
[67] C. Floss. Complexities on the Acapulcoite- Lodranite Parent Body , 1998 .
[68] J. Grossman. The Meteoritical Bulletin, No. 82, 1998 July , 1998 .
[69] K. Keil,et al. A petrologic and isotopic study of winonaites: Evidence for early partial melting, brecciation, and metamorphism , 1998 .
[70] G. Lugmair,et al. 53Mn-53Cr Systematics in Brachina: A Record of One of the Earliest Phases of Igneous Activity on an Asteroid , 1998 .
[71] M. Burkland,et al. Noble gases, bulk chemistry, and petrography of olivine‐rich achondrites Eagles Nest and Lewis Cliff 88763: Comparison to brachinites , 1998 .
[72] J. Farquhar,et al. IN SITU OXYGEN ISOTOPE ANALYSIS WITH AN EXCIMER LASER USING F2 AND BRF5 REAGENTS AND O2 GAS AS ANALYTE , 1997 .
[73] J. Birck,et al. Re‐Os Isotopic Measurements at the Femtomole Level in Natural Samples , 1997 .
[74] R. Clayton,et al. A petrologic and isotopic study of lodranites: Evidence for early formation as partial melt residues from heterogeneous precursors , 1997 .
[75] L. Taylor,et al. X-ray digital imaging petrography of lunar mare soils: modal analyses of minerals and glasses. , 1996, Icarus.
[76] M. Lindstrom,et al. Acapulco- and Lodran-like achondrites: Petrology, geochemistry, chronology, and origin , 1996 .
[77] R. Clayton,et al. A New Brachinite and Petrogenesis of the Group , 1996 .
[78] J. Morgan,et al. Re-Os Ages of Group IIA, IIIA, IVA, and IVB Iron Meteorites , 1996, Science.
[79] M. Kohn,et al. UWG-2, a garnet standard for oxygen isotope ratios: Strategies for high precision and accuracy with laser heating , 1995 .
[80] W. McDonough,et al. The composition of the Earth , 1995 .
[81] J. Wasson,et al. Classification and origin of IAB and IIICD iron meteorites , 1995 .
[82] John H. Jones,et al. Experimental partial melting of the St. Severin (LL) and Lost City (H) chondrites , 1995 .
[83] P. Warren. Lunar and Martian Meteorite Delivery Services , 1994 .
[84] R. Clayton,et al. The Divnoe Meteorite: Petrology, Chemistry, Oxygen Isotopes and Origin , 1994 .
[85] H. Haack,et al. Genesis of the IIICD iron meteorites - Evidence from silicate-bearing inclusions , 1993 .
[86] H. O’Neill,et al. An experimental study of Fe-Mg partitioning between olivine and orthopyroxene at 1173, 1273 and 1423 K and 1.6 GPa , 1993 .
[87] F. Wlotzka. The Meteoritical Bulletin, No. 73* , 1992 .
[88] R. Clayton,et al. Brachinites: A New Primitive Achondrite Group , 1992 .
[89] D. Mittlefehldt,et al. Partial Melting of the Aliende (CV3) Meteorite: Implications for Origins of Basaltic Meteorites , 1991, Science.
[90] E. Jarosewich,et al. Chemical analyses of meteorites: A compilation of stony and iron meteorite analyses , 1990 .
[91] F. Wlotzka. The Meteoritical Bulletin , 1990 .
[92] P. Warren,et al. Allan Hills 84025 - The second brachinite, far more differentiated than brachina, and an ultramafic achondritic clast from L chondrite Yamato 75097 , 1989 .
[93] John H. Jones,et al. Origin and evolution of the ureilite parent magmas: Multi-stage igneous activity on a large parent body , 1987 .
[94] D. Mittlefehldt. FeMgMn relations of ureilite olivines and pyroxenes and the genesis of ureilites , 1986 .
[95] H. Wänke,et al. Brachina: A new type of meteorite, not a chassignite , 1983 .
[96] S. Morse. Basalts and Phase Diagrams: An Introduction to the Quantitative Use of Phase Diagrams in Igneous Petrology , 1980 .
[97] G. Brown,et al. Lunar Science: A Post-Apollo View , 1976, Mineralogical Magazine.
[98] I. Kushiro. On the nature of silicate melt and its significance in magma genesis; regularities in the shift of the liquidus boundaries involving olivine, pyroxene, and silica minerals , 1975 .
[99] E. Anders,et al. Meteorites and the Early Solar System , 1971 .
[100] D. C. Presnall. The geometrical analysis of partial fusion , 1969 .
[101] B. Mason. Composition of the Earth , 1966, Nature.
[102] O. F. Tuttle,et al. ORIGIN OF GRANITE IN THE LIGHT OF EXPERIMENTAL STUDIES IN THE SYSTEM NaAlSi3O8–KAlSi3O8–SiO2–H2O , 1958 .