Origin of felsic achondrites Graves Nunataks 06128 and 06129, and ultramafic brachinites and brachinite-like achondrites by partial melting of volatile-rich primitive parent bodies

[1]  Bernard H. Foing,et al.  Lunar and Planetary Science Conference , 2013 .

[2]  L. Garvie The Meteoritical Bulletin, No. 99, April 2012* , 2012 .

[3]  Q. Yin,et al.  Constraining the Age of Partial Melting on the Brachinite Parent Body by Investigating Al-Mg Systematics in Brachina and Paired Achondrites GRA06128/9 , 2011 .

[4]  J. Zipfel,et al.  The Northwest Africa 1500 meteorite: Not a ureilite, maybe a brachinite , 2010 .

[5]  John H. Jones,et al.  Experimental Study of the Felsic Asteroidal Crust Formation Recorded in GRA 06128 and GRA 06129 , 2010 .

[6]  J. Day,et al.  Constraints on the Formation Age, Highly Siderophile Element Budget and Noble Gas Isotope Compositions of Northwest Africa 5400: An Ultramafic Achondrite with Terrestrial Isotopic Characteristics , 2010 .

[7]  John H. Jones,et al.  Low-Degree Partial Melting Experiments of CR and H Chondrite Compositions: Implications for Asteroidal Magmatism Recorded in GRA 06128 and GRA 06129 T , 2010 .

[8]  B. Weiss,et al.  Non-basaltic asteroidal magmatism during the earliest stages of solar system evolution: A view from Antarctic achondrites Graves Nunatak 06128 and 06129 , 2010 .

[9]  R. Walker,et al.  Osmium isotope and highly siderophile element systematics of the lunar crust , 2010 .

[10]  H. Becker,et al.  Rhodium, gold and other highly siderophile element abundances in chondritic meteorites , 2010 .

[11]  K. Keil Enstatite achondrite meteorites (aubrites) and the histories of their asteroidal parent bodies , 2010 .

[12]  L. Taylor,et al.  Sulfide inclusions in diamonds: not monosulfide solid solution , 2009 .

[13]  R. Walker,et al.  Highly siderophile element evidence for early solar system processes in components from ordinary chondrites , 2009 .

[14]  L. Taylor,et al.  The role of volatiles during asteroidal differentiation , 2009 .

[15]  L. Taylor,et al.  Day et al. reply , 2009, Nature.

[16]  T. Hiroi,et al.  Searching for the Evolved Crust of Oxidized Asteroids , 2009 .

[17]  L. Taylor,et al.  Early formation of evolved asteroidal crust , 2009, Nature.

[18]  D. Rumble,et al.  ULTRAMAFIC ACHONDRITE NORTHWEST AFRICA 5400: A UNIQUE BRACHINITE-LIKE METEORITE WITH TERRESTRIAL OXYGEN ISOTOPIC COMPOSITION. A. J. Irving , 2009 .

[19]  L. Nyquist,et al.  Early Petrogenesis and Late Impact(?) Metamorphism on the GRA 06128/9 Parent Body , 2009 .

[20]  I. Franchi,et al.  Geochemistry of diogenites: Still more diversity in their parental melts , 2008 .

[21]  M. Humayun,et al.  Highly siderophile elements in ureilites , 2008 .

[22]  D. Pearson,et al.  Rhenium–Osmium Isotope and Platinum-Group Element Constraints on the Origin and Evolution of the 1·27 Ga Muskox Layered Intrusion , 2008 .

[23]  Nancy L. Chabot,et al.  Modeling fractional crystallization of group IVB iron meteorites , 2008 .

[24]  T. Bunch,et al.  Oxygen Isotopic and Petrological Diversity Among Brachinites NWA 4872, NWA 4874, NWA 4882 and NWA 4969: How Many Ancient Parent Bodies? , 2008 .

[25]  K. Saiki,et al.  Unique Achondrites GRA 06128/06129: Andesitic Partial Melt from a Volatile-rich Parent Body , 2008 .

[26]  K. Righter,et al.  The Meteoritical Bulletin, No. 93, 2008 March , 2008 .

[27]  R. Korotev,et al.  Petrology, Geochemistry, and Likely Provenance of Unique Achondrite Graves Nunataks 06128 , 2008 .

[28]  T. Mikouchi,et al.  Mineralogy and Pyroxene Cooling Rate of Unique Achondritic Meteorite GRA 06129 , 2008 .

[29]  I. Franchi,et al.  Oxygen three-isotope fractionation lines in terrestrial silicate minerals: An inter-laboratory comparison of hydrothermal quartz and eclogitic garnet , 2007 .

[30]  L. Wilson,et al.  Fractional melting and smelting on the ureilite parent body , 2007 .

[31]  A. Rubin Petrogenesis of acapulcoites and lodranites : A shock-melting model , 2007 .

[32]  J. Sunshine,et al.  Olivine‐dominated asteroids and meteorites: Distinguishing nebular and igneous histories , 2007 .

[33]  L. Taylor,et al.  Oxygen isotope constraints on the origin and differentiation of the Moon , 2007 .

[34]  L. Taylor,et al.  Highly Siderophile Element Constraints on Accretion and Differentiation of the Earth-Moon System , 2007, Science.

[35]  John H. Jones,et al.  Petrography and Origin of the Unique Achondrite GRA 06128 and 06129: Preliminary Results , 2007 .

[36]  C. Floss,et al.  Evolved mare basalt magmatism, high Mg/Fe feldspathic crust, chondritic impactors, and the petrogenesis of Antarctic lunar breccia meteorites Meteorite Hills 01210 and Pecora Escarpment 02007 , 2006 .

[37]  M. Humayun,et al.  Osmium isotope systematics of ureilites , 2006 .

[38]  John M. Hughes,et al.  Crystal chemistry of lunar merrillite and comparison to other meteoritic and planetary suites of whitlockite and merrillite , 2006 .

[39]  R. Walker,et al.  Highly siderophile element composition of the Earth’s primitive upper mantle: Constraints from new data on peridotite massifs and xenoliths , 2006 .

[40]  C. Goodrich,et al.  Northwest Africa 1500: Plagioclase‐bearing monomict ureilite or ungrouped achondrite? , 2006 .

[41]  G. Kallemeyn,et al.  Siderophile geochemistry of ureilites : A record of early stages of planetesimal core formation , 2006 .

[42]  D. W. Schnare,et al.  Comparative petrology, geochemistry, and petrogenesis of evolved, low-Ti lunar mare basalt meteorites from the LaPaz Icefield, Antarctica , 2006 .

[43]  D. Rumble,et al.  Oxygen Isotopes in Brachina, SAH 99555 and Northwest Africa 1054 , 2006 .

[44]  D. Mittlefehldt,et al.  Asteroid Differentiation , 2006 .

[45]  D. Rumble,et al.  Brachinite NWA 3151 and (?)Brachinite NWA 595 , 2005 .

[46]  A. Jambon,et al.  Widespread magma oceans on asteroidal bodies in the early Solar System , 2005, Nature.

[47]  C. Floss,et al.  Northwest Africa 011: A “eucritic” basalt from a non‐eucrite parent body , 2005 .

[48]  R. Ash,et al.  Re-187-Os-187, Pt-190-Os-186 Isotopic and Highly Siderophile Element Systematics of Group IVA Irons , 2005 .

[49]  E. Scott,et al.  Ureilitic breccias: clues to the petrologic structure and impact disruption of the ureilite parent asteroid , 2004 .

[50]  K. Keil,et al.  Feldspathic clast populations in polymict ureilites: Stalking the missing basalts from the ureilite parent body , 2004 .

[51]  J. Morgan,et al.  Pt-Re-Os systematics of group IIAB and IIIAB iron meteorites , 2004 .

[52]  Timothy H. McConnochie,et al.  E‐type asteroid spectroscopy and compositional modeling , 2004 .

[53]  K. Righter METAL-SILICATE PARTITIONING OF SIDEROPHILE ELEMENTS AND CORE FORMATION IN THE EARLY EARTH* , 2003 .

[54]  D. Mittlefehldt,et al.  Brachinites: Igneous rocks from a differentiated asteroid , 2003 .

[55]  J. Morgan,et al.  Highly siderophile elements in chondrites , 2003 .

[56]  John H. Jones,et al.  Signatures of the highly siderophile elements in the SNC meteorites and Mars: a review and petrologic synthesis , 2003 .

[57]  John H. Jones,et al.  The parameterization of solid metal‐liquid metal partitioning of siderophile elements , 2003 .

[58]  J. Morgan,et al.  Comparative 187Re-187Os systematics of chondrites: Implications regarding early solar system processes , 2002 .

[59]  M. F. Miller Isotopic fractionation and the quantification of 17O anomalies in the oxygen three-isotope system: an appraisal and geochemical significance , 2002 .

[60]  R. Clayton,et al.  A New Source of Basaltic Meteorites Inferred from Northwest Africa 011 , 2002, Science.

[61]  Michael T. Lee,et al.  Petrology and geochemistry of D'Orbigny, geochemistry of Sahara 99555, and the origin of angrites , 2002 .

[62]  R. Jones,et al.  Disequilibrium partial melting experiments on the Leedey L6 chondrite: Textural controls on melting processes , 2001 .

[63]  M. Prinz,et al.  Magmatic inclusions and felsic clasts in the Dar al Gani 319 polymict ureilite , 2001 .

[64]  C. Floss Complexities on the acapulcoite‐lodranite parent body: Evidence from trace element distributions in silicate minerals , 2000 .

[65]  D. Mittlefehldt,et al.  Mineralogy, petrology, chemistry, and 39Ar-40Ar and exposure ages of the Caddo County IAB iron: evidence for early partial melt segregation of a gabbro area rich in plagioclase-diopside , 2000 .

[66]  R. Clayton,et al.  Zag (b): A Ferroan Achondrite Intermediate Between Brachinites and Lodranites , 2000 .

[67]  C. Floss Complexities on the Acapulcoite- Lodranite Parent Body , 1998 .

[68]  J. Grossman The Meteoritical Bulletin, No. 82, 1998 July , 1998 .

[69]  K. Keil,et al.  A petrologic and isotopic study of winonaites: Evidence for early partial melting, brecciation, and metamorphism , 1998 .

[70]  G. Lugmair,et al.  53Mn-53Cr Systematics in Brachina: A Record of One of the Earliest Phases of Igneous Activity on an Asteroid , 1998 .

[71]  M. Burkland,et al.  Noble gases, bulk chemistry, and petrography of olivine‐rich achondrites Eagles Nest and Lewis Cliff 88763: Comparison to brachinites , 1998 .

[72]  J. Farquhar,et al.  IN SITU OXYGEN ISOTOPE ANALYSIS WITH AN EXCIMER LASER USING F2 AND BRF5 REAGENTS AND O2 GAS AS ANALYTE , 1997 .

[73]  J. Birck,et al.  Re‐Os Isotopic Measurements at the Femtomole Level in Natural Samples , 1997 .

[74]  R. Clayton,et al.  A petrologic and isotopic study of lodranites: Evidence for early formation as partial melt residues from heterogeneous precursors , 1997 .

[75]  L. Taylor,et al.  X-ray digital imaging petrography of lunar mare soils: modal analyses of minerals and glasses. , 1996, Icarus.

[76]  M. Lindstrom,et al.  Acapulco- and Lodran-like achondrites: Petrology, geochemistry, chronology, and origin , 1996 .

[77]  R. Clayton,et al.  A New Brachinite and Petrogenesis of the Group , 1996 .

[78]  J. Morgan,et al.  Re-Os Ages of Group IIA, IIIA, IVA, and IVB Iron Meteorites , 1996, Science.

[79]  M. Kohn,et al.  UWG-2, a garnet standard for oxygen isotope ratios: Strategies for high precision and accuracy with laser heating , 1995 .

[80]  W. McDonough,et al.  The composition of the Earth , 1995 .

[81]  J. Wasson,et al.  Classification and origin of IAB and IIICD iron meteorites , 1995 .

[82]  John H. Jones,et al.  Experimental partial melting of the St. Severin (LL) and Lost City (H) chondrites , 1995 .

[83]  P. Warren Lunar and Martian Meteorite Delivery Services , 1994 .

[84]  R. Clayton,et al.  The Divnoe Meteorite: Petrology, Chemistry, Oxygen Isotopes and Origin , 1994 .

[85]  H. Haack,et al.  Genesis of the IIICD iron meteorites - Evidence from silicate-bearing inclusions , 1993 .

[86]  H. O’Neill,et al.  An experimental study of Fe-Mg partitioning between olivine and orthopyroxene at 1173, 1273 and 1423 K and 1.6 GPa , 1993 .

[87]  F. Wlotzka The Meteoritical Bulletin, No. 73* , 1992 .

[88]  R. Clayton,et al.  Brachinites: A New Primitive Achondrite Group , 1992 .

[89]  D. Mittlefehldt,et al.  Partial Melting of the Aliende (CV3) Meteorite: Implications for Origins of Basaltic Meteorites , 1991, Science.

[90]  E. Jarosewich,et al.  Chemical analyses of meteorites: A compilation of stony and iron meteorite analyses , 1990 .

[91]  F. Wlotzka The Meteoritical Bulletin , 1990 .

[92]  P. Warren,et al.  Allan Hills 84025 - The second brachinite, far more differentiated than brachina, and an ultramafic achondritic clast from L chondrite Yamato 75097 , 1989 .

[93]  John H. Jones,et al.  Origin and evolution of the ureilite parent magmas: Multi-stage igneous activity on a large parent body , 1987 .

[94]  D. Mittlefehldt FeMgMn relations of ureilite olivines and pyroxenes and the genesis of ureilites , 1986 .

[95]  H. Wänke,et al.  Brachina: A new type of meteorite, not a chassignite , 1983 .

[96]  S. Morse Basalts and Phase Diagrams: An Introduction to the Quantitative Use of Phase Diagrams in Igneous Petrology , 1980 .

[97]  G. Brown,et al.  Lunar Science: A Post-Apollo View , 1976, Mineralogical Magazine.

[98]  I. Kushiro On the nature of silicate melt and its significance in magma genesis; regularities in the shift of the liquidus boundaries involving olivine, pyroxene, and silica minerals , 1975 .

[99]  E. Anders,et al.  Meteorites and the Early Solar System , 1971 .

[100]  D. C. Presnall The geometrical analysis of partial fusion , 1969 .

[101]  B. Mason Composition of the Earth , 1966, Nature.

[102]  O. F. Tuttle,et al.  ORIGIN OF GRANITE IN THE LIGHT OF EXPERIMENTAL STUDIES IN THE SYSTEM NaAlSi3O8–KAlSi3O8–SiO2–H2O , 1958 .