Parameter identification for leaky aquifers using global optimization methods

In the past, graphical or computer methods were usually employed to determine the aquifer parameters of the observed data obtained from field pumping tests. Since we employed the computer methods to determine the aquifer parameters, an analytical aquifer model was required to estimate the predicted drawdown. Following this, the gradient-type approach was used to solve the nonlinear least-squares equations to obtain the aquifer parameters. This paper proposes a novel approach based on a drawdown model and a global optimization method of simulated annealing (SA) or a genetic algorithm (GA) to determine the best-fit aquifer parameters for leaky aquifer systems. The aquifer parameters obtained from SA and the GA almost agree with those obtained from the extended Kalman filter and gradient-type method. Moreover, all results indicate that the SA and GA are robust and yield consistent results when dealing with the parameter identification problems. Copyright © 2006 John Wiley & Sons, Ltd.

[1]  S. Lohman,et al.  Ground-Water Hydraulics , 1972 .

[2]  Jonathan D. Istok,et al.  Aquifer Testing: Design and Analysis of Pumping and Slug Tests , 1991 .

[3]  David Coley,et al.  Introduction to Genetic Algorithms for Scientists and Engineers , 1999 .

[4]  S. P. Neuman,et al.  Theory of Flow in a Confined Two Aquifer System , 1969 .

[5]  N. S. Rao,et al.  Identification of parameters in semiconfined aquifers , 1987 .

[6]  Maria da Conceição Cunha,et al.  Water Distribution Network Design Optimization: Simulated Annealing Approach , 1999 .

[7]  William H. Press,et al.  Numerical recipes , 1990 .

[8]  Vedat Batu Aquifer Hydraulics: A Comprehensive Guide to Hydrogeologic Data Analysis , 1998 .

[9]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[10]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[11]  Yen-Chen Huang,et al.  Parameter estimation for leaky aquifers using the extended Kalman filter, and considering model and data measurement uncertainties , 2005 .

[12]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[13]  D. McKinney,et al.  Genetic algorithm solution of groundwater management models , 1994 .

[14]  William L. Goffe,et al.  SIMANN: FORTRAN module to perform Global Optimization of Statistical Functions with Simulated Annealing , 1992 .

[15]  Duc Truong Pham,et al.  Intelligent optimisation techniques , 2000 .

[16]  H. A. Luther,et al.  Applied numerical methods , 1969 .

[17]  C. E. Jacob Radial flow in a leaky artesian aquifer , 1946 .

[18]  P. Patrick Wang,et al.  Parameter structure identification using tabu search and simulated annealing , 1996 .

[19]  Hund-Der Yeh Theis' Solution by Nonlinear Least-Squares and Finite-Difference Newton's Method , 1987 .

[20]  C. E. Jacob,et al.  Non-steady radial flow in an infinite leaky aquifer , 1955 .

[21]  H. Yeh,et al.  Numerical Identification of Parameters in Leaky Aquifers , 1989 .