LiGRO: a graphical user interface for protein–ligand molecular dynamics

To speed up the drug-discovery process, molecular dynamics (MD) calculations performed in GROMACS can be coupled to docking simulations for the post-screening analyses of large compound libraries. This requires generating the topology of the ligands in different software, some basic knowledge of Linux command lines, and a certain familiarity in handling the output files. LiGRO—the python-based graphical interface introduced here—was designed to overcome these protein–ligand parameterization challenges by allowing the graphical (non command line-based) control of GROMACS (MD and analysis), ACPYPE (ligand topology builder) and PLIP (protein-binder interactions monitor)—programs that can be used together to fully perform and analyze the outputs of complex MD simulations (including energy minimization and NVT/NPT equilibration). By allowing the calculation of linear interaction energies in a simple and quick fashion, LiGRO can be used in the drug-discovery pipeline to select compounds with a better protein-binding interaction profile. The design of LiGRO allows researchers to freely download and modify the software, with the source code being available under the terms of a GPLv3 license from http://www.ufrgs.br/lasomfarmacia/ligro/.

[1]  Dimitrios Vlachakis,et al.  Gromita: A Fully Integrated Graphical User Interface to Gromacs 4 , 2009, Bioinformatics and biology insights.

[2]  P. Kollman,et al.  Molecular Dynamics Simulations on Solvated Biomolecular Systems: The Particle Mesh Ewald Method Leads to Stable Trajectories of DNA, RNA, and Proteins , 1995 .

[3]  Tomasz Makarewicz,et al.  Molecular Dynamics Simulation by GROMACS Using GUI Plugin for PyMOL , 2013, J. Chem. Inf. Model..

[4]  Michael Schroeder,et al.  PLIP: fully automated protein–ligand interaction profiler , 2015, Nucleic Acids Res..

[5]  Gerrit Groenhof,et al.  GROMACS: Fast, flexible, and free , 2005, J. Comput. Chem..

[6]  Tomasz Makarewicz,et al.  Improvements in GROMACS plugin for PyMOL including implicit solvent simulations and displaying results of PCA analysis , 2016, Journal of Molecular Modeling.

[7]  G. vanRossum,et al.  Interactively testing remote servers using the Python programming language , 1991 .

[8]  VINCENT ZOETE,et al.  SwissParam: A fast force field generation tool for small organic molecules , 2011, J. Comput. Chem..

[9]  Ross C. Walker,et al.  An overview of the Amber biomolecular simulation package , 2013 .

[10]  Wim F Vranken,et al.  ACPYPE - AnteChamber PYthon Parser interfacE , 2012, BMC Research Notes.

[11]  Gaël Varoquaux,et al.  Scikit-learn: Machine Learning in Python , 2011, J. Mach. Learn. Res..

[12]  J. Gready,et al.  Combining docking and molecular dynamic simulations in drug design , 2006, Medicinal research reviews.

[13]  Hugo Gutiérrez-de-Terán,et al.  Linear interaction energy: method and applications in drug design. , 2012, Methods in molecular biology.

[14]  Pradeep Kota GUIMACS - A Java Based Front End for GROMACS , 2007, Silico Biol..

[15]  John K. Ousterhout,et al.  Tcl and the Tk Toolkit , 1994 .

[16]  John K. Ousterhout,et al.  TCL and the TK Toolkit (Addison-Wesley Professional Computing) , 2008 .

[17]  Michael Heydt Mastering pandas for finance : Master pandas, an open source Python data analysis library, for financial data analysis , 2015 .

[18]  Gaël Varoquaux,et al.  The NumPy Array: A Structure for Efficient Numerical Computation , 2011, Computing in Science & Engineering.

[19]  John D. Hunter,et al.  Matplotlib: A 2D Graphics Environment , 2007, Computing in Science & Engineering.