Nanocavity Enhancement for Ultra‐Thin Film Optical Absorber

A fundamental strategy is developed to enhance the light-matter interaction of ultra-thin films based on a strong interference effect in planar nanocavities, and overcome the limitation between the optical absorption and film thickness of energy harvesting/conversion materials. This principle is quite general and is applied to explore the spectrally tunable absorption enhancement of various ultra-thin absorptive materials including 2D atomic monolayers.

[1]  SUPARNA DUTTASINHA,et al.  Van der Waals heterostructures , 2013, Nature.

[2]  A. Radenović,et al.  Ultrasensitive photodetectors based on monolayer MoS2. , 2013, Nature nanotechnology.

[3]  E. Garnett,et al.  Extreme light absorption in thin semiconductor films wrapped around metal nanowires. , 2013, Nano letters.

[4]  Qiaoqiang Gan,et al.  Plasmonic‐Enhanced Organic Photovoltaics: Breaking the 10% Efficiency Barrier , 2013, Advanced materials.

[5]  N. Melosh,et al.  Power-independent wavelength determination by hot carrier collection in metal-insulator-metal devices , 2013, Nature Communications.

[6]  A. Rothschild,et al.  Resonant light trapping in ultrathin films for water splitting. , 2013, Nature materials.

[7]  Federico Capasso,et al.  Ultra-thin perfect absorber employing a tunable phase change material , 2012 .

[8]  Barry P Rand,et al.  Design of Transparent Anodes for Resonant Cavity Enhanced Light Harvesting in Organic Solar Cells , 2012, Advanced materials.

[9]  A. Ferreira,et al.  Graphene-based photodetector with two cavities , 2012, 1201.3175.

[10]  P. Klang,et al.  Microcavity-Integrated Graphene Photodetector , 2011, Nano letters.

[11]  M. Engel,et al.  Light–matter interaction in a microcavity-controlled graphene transistor , 2011, Nature Communications.

[12]  S. Linic,et al.  Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. , 2011, Nature materials.

[13]  N. Melosh,et al.  Plasmonic energy collection through hot carrier extraction. , 2011, Nano letters.

[14]  Barry P Rand,et al.  Electrode Considerations for the Optical Enhancement of Organic Bulk Heterojunction Solar Cells , 2011 .

[15]  S. Thongrattanasiri,et al.  Complete optical absorption in periodically patterned graphene. , 2011, Physical review letters.

[16]  Naomi J. Halas,et al.  Photodetection with Active Optical Antennas , 2011, Science.

[17]  A. Ferrari,et al.  Graphene Photonics and Optoelectroncs , 2010, CLEO 2012.

[18]  Zongfu Yu,et al.  Fundamental limit of nanophotonic light trapping in solar cells , 2010, Proceedings of the National Academy of Sciences.

[19]  Satoshi Ishii,et al.  Ultra-thin ultra-smooth and low-loss silver films on a germanium wetting layer. , 2010, Optics express.

[20]  H. Atwater,et al.  Plasmonics for improved photovoltaic devices. , 2010, Nature materials.

[21]  R. Williams,et al.  A smooth optical superlens , 2010 .

[22]  Y. Liu,et al.  Thickness effect on the band gap and optical properties of germanium thin films , 2010 .

[23]  F. Xia,et al.  Ultrafast graphene photodetector. , 2009, Nature nanotechnology.

[24]  K. Novoselov,et al.  Rayleigh imaging of graphene and graphene layers. , 2007, Nano letters.

[25]  A. Neto,et al.  Making graphene visible , 2007, Applied Physics Letters.

[26]  Andre K. Geim,et al.  The rise of graphene. , 2007, Nature materials.

[27]  Dong-Sing Wuu,et al.  Tri-layer antireflection coatings (SiO2/SiO2–TiO2/TiO2) for silicon solar cells using a sol–gel technique , 2006 .

[28]  Xiong Gong,et al.  New Architecture for High‐Efficiency Polymer Photovoltaic Cells Using Solution‐Based Titanium Oxide as an Optical Spacer , 2006 .

[29]  H. Schmidt,et al.  Optical and Electronic Contributions in Double‐Heterojunction Organic Thin‐Film Solar Cells , 2003 .

[30]  A. Chikouche,et al.  Design and simulation of antireflection coating systems for optoelectronic devices : Application to silicon solar cells , 1998 .

[31]  J. Muszalski,et al.  Resonant cavity enhanced photonic devices , 1995 .

[32]  J. A. Dobrowolski Optical interference filters for the adjustment of spectral response and spectral power distribution. , 1970, Applied optics.

[33]  R. Blanchard,et al.  Thin-Film Interference in Lossy, Ultra-Thin Layers , 2014 .

[34]  Federico Capasso,et al.  Nanometre optical coatings based on strong interference effects in highly absorbing media. , 2013, Nature materials.

[35]  R. Williams,et al.  Ultrasmooth silver thin films deposited with a germanium nucleation layer. , 2009, Nano letters.