In vivo bioluminescence imaging of natural bacteria within deep tissues via ATP-binding cassette sugar transporter

[1]  Kanyi Pu,et al.  Activatable near-infrared probes for the detection of specific populations of tumour-infiltrating leukocytes in vivo and in urine , 2023, Nature Biomedical Engineering.

[2]  Cheng Xu,et al.  Nanoparticles with ultrasound-induced afterglow luminescence for tumour-specific theranostics , 2022, Nature Biomedical Engineering.

[3]  Bin Song,et al.  Bacteria loaded with glucose polymer and photosensitive ICG silicon-nanoparticles for glioblastoma photothermal immunotherapy , 2022, Nature Communications.

[4]  Bin Song,et al.  Trojan Nanobacteria System for Photothermal Programmable Destruction of Deep Tumor Tissues. , 2022, Angewandte Chemie.

[5]  Bin Song,et al.  Bacteria eat nanoprobes for aggregation-enhanced imaging and killing diverse microorganisms , 2022, Nature Communications.

[6]  Y. Weizmann,et al.  Intelligent bio-assembly imaging-guided platform for real-time bacteria sterilizing and infectious therapy , 2022, Nano Research.

[7]  Mikhail G. Shapiro,et al.  Acoustically triggered mechanotherapy using genetically encoded gas vesicles , 2021, Nature Nanotechnology.

[8]  Kanyi Pu,et al.  Molecular Probes for Autofluorescence-Free Optical Imaging. , 2021, Chemical reviews.

[9]  S. Polyakov,et al.  Portable bioluminescent platform for in vivo monitoring of biological processes in non-transgenic animals , 2021, Nature Communications.

[10]  Stephen J. Bruce,et al.  Noninvasive imaging and quantification of bile salt hydrolase activity: From bacteria to humans , 2021, Science Advances.

[11]  X. Ji,et al.  Long-term fundus fluorescence angiography and real-time diagnosis of retinal diseases in non-human primate-animal models , 2021, Nano Research.

[12]  K. Xia,et al.  Ångstrom-scale silver particle–embedded carbomer gel promotes wound healing by inhibiting bacterial colonization and inflammation , 2020, Science Advances.

[13]  Chun‐Xia Zhao,et al.  NIR-II bioluminescence for in vivo high contrast imaging and in situ ATP-mediated metastases tracing , 2020, Nature Communications.

[14]  Michael Z. Lin,et al.  Novel NanoLuc substrates enable bright two-population bioluminescence imaging in animals , 2020, Nature Methods.

[15]  Xiu‐Ping Yan,et al.  pH Switchable Nanoplatform for In Vivo Persistent Luminescence Imaging and Precise Photothermal Therapy of Bacterial Infection , 2020, Advanced Functional Materials.

[16]  I. Steinberg,et al.  Maltotriose-based probes for fluorescence and photoacoustic imaging of bacterial infections , 2020, Nature Communications.

[17]  Xiaolan Chen,et al.  Ultrasound-Switchable Nanozyme Augments Sonodynamic Therapy against Multidrug-Resistant Bacterial Infection. , 2020, ACS nano.

[18]  D. McComb,et al.  Vitamin lipid nanoparticles enable adoptive macrophage transfer for the treatment of multidrug-resistant bacterial sepsis , 2020, Nature Nanotechnology.

[19]  Xing-Jie Liang,et al.  Thermo-responsive triple-function nanotransporter for efficient chemo-photothermal therapy of multidrug-resistant bacterial infection , 2019, Nature Communications.

[20]  Yuanyuan Su,et al.  Multifunctional nanoagents for ultrasensitive imaging and photoactive killing of Gram-negative and Gram-positive bacteria , 2019, Nature Communications.

[21]  Bin Song,et al.  Fluorescent silicon nanomaterials: from synthesis to functionalization and application , 2019, Nano Today.

[22]  D. Mazel,et al.  Engineered toxin–intein antimicrobials can selectively target and kill antibiotic-resistant bacteria in mixed populations , 2019, Nature Biotechnology.

[23]  D. Shackelford,et al.  Bioluminescent-based imaging and quantification of glucose uptake in vivo , 2019, Nature Methods.

[24]  Michael Z. Lin,et al.  An orange calcium-modulated bioluminescent indicator for non-invasive activity imaging , 2019, Nature Chemical Biology.

[25]  Fan Zhang,et al.  Anti-quenching NIR-II molecular fluorophores for in vivo high-contrast imaging and pH sensing , 2019, Nature Communications.

[26]  Yin Dou,et al.  A self-illuminating nanoparticle for inflammation imaging and cancer therapy , 2019, Science Advances.

[27]  A. Klose,et al.  Automated quantification of bioluminescence images , 2018, Nature Communications.

[28]  R. Novick,et al.  Conversion of staphylococcal pathogenicity islands to CRISPR-Cas9-based antibacterial drones that cure staph infections in mice , 2018, Nature Biotechnology.

[29]  Min-Gon Kim,et al.  Adenosine Triphosphate Bioluminescence-Based Bacteria Detection Using Targeted Photothermal Lysis by Gold Nanorods. , 2018, Analytical chemistry.

[30]  M. Raffatellu Learning from bacterial competition in the host to develop antimicrobials , 2018, Nature Medicine.

[31]  Yun Zhang,et al.  The in vivo targeted molecular imaging of fluorescent silicon nanoparticles in Caenorhabditis elegans , 2018, Nano Research.

[32]  Hideyuki Okano,et al.  Single-cell bioluminescence imaging of deep tissue in freely moving animals , 2018, Science.

[33]  S. Chakradhar Breaking through: How researchers are gaining entry into barricaded bacteria , 2017, Nature Medicine.

[34]  Hui-wang Ai,et al.  Red-shifted luciferase-luciferin pairs for enhanced bioluminescence imaging , 2017, Nature Methods.

[35]  W. Tan,et al.  In situ targeted MRI detection of Helicobacter pylori with stable magnetic graphitic nanocapsules , 2017, Nature Communications.

[36]  J. Pagés,et al.  Erratum: Unusual marine unicellular symbiosis with the nitrogen-fixing cyanobacterium UCYN-A , 2017, Nature Microbiology.

[37]  Xiaodong Zhang,et al.  Quaternized Silicon Nanoparticles with Polarity‐Sensitive Fluorescence for Selectively Imaging and Killing Gram‐Positive Bacteria , 2016 .

[38]  Y. Sima,et al.  Impact of fluorescent silicon nanoparticles on circulating hemolymph and hematopoiesis in an invertebrate model organism. , 2016, Chemosphere.

[39]  Xiaoyuan Ji,et al.  Water‐Dispersible Fluorescent Silicon Nanoparticles and their Optical Applications , 2016, Advanced materials.

[40]  Erik S. Welf,et al.  A bright cyan-excitable orange fluorescent protein facilitates dual-emission microscopy and enhances bioluminescence imaging in vivo , 2016, Nature Biotechnology.

[41]  E. Brown,et al.  Antibacterial drug discovery in the resistance era , 2016, Nature.

[42]  Xiaoyuan Ji,et al.  Biomimetic Preparation and Dual-Color Bioimaging of Fluorescent Silicon Nanoparticles. , 2015, Journal of the American Chemical Society.

[43]  Xiaoyuan Ji,et al.  Highly Fluorescent, Photostable, and Ultrasmall Silicon Drug Nanocarriers for Long‐Term Tumor Cell Tracking and In‐Vivo Cancer Therapy , 2015, Advanced materials.

[44]  D. Weiss,et al.  PET imaging of bacterial infections with fluorine-18-labeled maltohexaose. , 2014, Angewandte Chemie.

[45]  Mithat Gönen,et al.  Clinical translation of an ultrasmall inorganic optical-PET imaging nanoparticle probe , 2014, Science Translational Medicine.

[46]  C. Fan,et al.  Silicon nanomaterials platform for bioimaging, biosensing, and cancer therapy. , 2014, Accounts of chemical research.

[47]  M. D. de Goffau,et al.  Real-time in vivo imaging of invasive- and biomaterial-associated bacterial infections using fluorescently labelled vancomycin , 2013, Nature Communications.

[48]  Stephen B. Howell,et al.  In Vivo Time-gated Fluorescence Imaging with Biodegradable Luminescent Porous Silicon Nanoparticles , 2013, Nature Communications.

[49]  Joe J. Harrison,et al.  Antimicrobial activity of metals: mechanisms, molecular targets and applications , 2013, Nature Reviews Microbiology.

[50]  J. Rao,et al.  Self-luminescing BRET-FRET near infrared dots for in vivo lymph node mapping and tumor imaging , 2012, Nature Communications.

[51]  Yao He,et al.  One-pot microwave synthesis of water-dispersible, ultraphoto- and pH-stable, and highly fluorescent silicon quantum dots. , 2011, Journal of the American Chemical Society.

[52]  Dongin Kim,et al.  Maltodextrin-based imaging probes detect bacteria in vivo with high sensitivity and specificity. , 2011, Nature materials.

[53]  J Richard Miller,et al.  Structural basis for effectiveness of siderophore-conjugated monocarbams against clinically relevant strains of Pseudomonas aeruginosa , 2010, Proceedings of the National Academy of Sciences.

[54]  M. Grote,et al.  The maltose ATP‐binding cassette transporter in the 21st century – towards a structural dynamic perspective on its mode of action , 2010, Molecular microbiology.

[55]  W. Goebel,et al.  Maltose and Maltodextrin Utilization by Listeria monocytogenes Depend on an Inducible ABC Transporter which Is Repressed by Glucose , 2010, PloS one.

[56]  David Piwnica-Worms,et al.  Bioluminescence imaging of myeloperoxidase activity in vivo , 2009, Nature Medicine.

[57]  Michael J Sailor,et al.  Biodegradable luminescent porous silicon nanoparticles for in vivo applications. , 2009, Nature materials.

[58]  Jung-Joon Min,et al.  Quantitative bioluminescence imaging of tumor-targeting bacteria in living animals , 2008, Nature Protocols.

[59]  Jennifer Sturgis,et al.  Bacteria-mediated delivery of nanoparticles and cargo into cells. , 2007, Nature nanotechnology.

[60]  H. Choy,et al.  Noninvasive Real-time Imaging of Tumors and Metastases Using Tumor-targeting Light-emitting Escherichia coli , 2007, Molecular Imaging and Biology.

[61]  Sanjiv S Gambhir,et al.  Self-illuminating quantum dot conjugates for in vivo imaging , 2006, Nature Biotechnology.

[62]  Qian Zhang,et al.  Visualization of tumors and metastases in live animals with bacteria and vaccinia virus encoding light-emitting proteins , 2004, Nature Biotechnology.

[63]  A. Charbit Maltodextrin transport through lamb. , 2003, Frontiers in bioscience : a journal and virtual library.

[64]  R. Bergeron Synthesis and solution structure of microbial siderophores , 1984 .