Convergence of the Yamabe flow for arbitrary initial energy

We consider the Yamabe flow ∂g ∂t = −(Rg − rg) g, where g is a Riemannian metric on a compact manifold M , Rg denotes its scalar curvature, and rg denotes the mean value of the scalar curvature. We prove convergence of the Yamabe flow if the dimension n satisfies 3 ≤ n ≤ 5 or the initial metric is locally conformally flat.

[1]  L. Simon Asymptotics for a class of non-linear evolution equations, with applications to geometric problems , 1983 .

[2]  A. Bahri Critical points at infinity in some variational problems , 1989 .

[3]  Hartmut Schwetlick,et al.  Convergence of the Yamabe flow for ``large'' energies , 2003 .

[4]  J. Coron,et al.  On a nonlinear elliptic equation involving the critical sobolev exponent: The effect of the topology of the domain , 1988 .

[5]  S. Yau,et al.  Conformally flat manifolds, Kleinian groups and scalar curvature , 1988 .

[6]  R. Kulkarni Conformally flat manifolds. , 1972, Proceedings of the National Academy of Sciences of the United States of America.

[7]  O. Rey The role of the green's function in a non-linear elliptic equation involving the critical Sobolev exponent , 1990 .

[8]  T. Aubin Equations differentielles non lineaires et probleme de Yamabe concernant la courbure scalaire , 1976 .

[9]  Thomas H. Parker,et al.  The Yamabe problem , 1987 .

[10]  R. Schoen Conformal deformation of a Riemannian metric to constant scalar curvature , 1984 .

[11]  Jean-Michel Coron,et al.  Convergence of solutions of H-systems or how to blow bubbles , 1985 .

[12]  Michael Struwe,et al.  A global compactness result for elliptic boundary value problems involving limiting nonlinearities , 1984 .

[13]  A. Friedman Partial Differential Equations of Parabolic Type , 1983 .

[14]  P. Bassanini,et al.  Elliptic Partial Differential Equations of Second Order , 1997 .

[15]  Conformal metrics of constant mass , 2001 .

[16]  R. Ye Global existence and convergence of Yamabe flow , 1994 .

[17]  S. Yau,et al.  Lectures on Differential Geometry , 1994 .

[18]  Jie Qing,et al.  Bubbling of the heat flows for harmonic maps from surfaces , 1997 .

[19]  Bennett Chow,et al.  The yamabe flow on locally conformally flat manifolds with positive ricci curvature , 1992 .