Sets , Categories and Structuralism ∗

First we introduce some basic theoretical issues that set the stage for subsequent accounts. Secondly, we touch upon some important issues: Set-theory vs. category theory, various conceptions of sets, the problem of universals, combining set-theory and category theory, structuralism, and finally category theory as an application tool. We argue that in the present time, the categorical holistic way of structuring is much needed. Also we would like to see a kind of unification, not only to mathematics but to structuralism as well.

[1]  H. Jerome Keisler,et al.  The Hyperreal Line , 1994 .

[2]  Thomas P. Caudell,et al.  Neural Networks, Knowledge and Cognition: A Mathematical Semantic Model Based upon Category Theory , 2004 .

[3]  Ciro De Florio,et al.  Thinking about Mathematics. The Philosophy of Mathematics. , 2003 .

[4]  Galen Weitkamp,et al.  Recursive Aspects of Descriptive Set Theory , 1985 .

[5]  J. Adámek,et al.  Locally Presentable and Accessible Categories: Bibliography , 1994 .

[6]  F. William Lawvere Continuously Variable Sets; Algebraic Geometry = Geometric Logic , 1975 .

[7]  C. McLarty The Uses and Abuses of the History of Topos Theory , 1990, The British Journal for the Philosophy of Science.

[8]  Joe Harris,et al.  The Geometry Of Schemes , 1992 .

[9]  Stewart Shapiro,et al.  Categories, Structures, and the Frege-Hilbert Controversy: The Status of Meta-mathematics , 2005 .

[10]  F. William Lawvere Foundations and applications: axiomatization and education , 2003, Bull. Symb. Log..

[11]  J. L. Bell Categories, toposes and sets , 2004, Synthese.

[12]  Christopher Menzel Structuralism and Conceptual Change in Mathematics , 1990, PSA: Proceedings of the Biennial Meeting of the Philosophy of Science Association.

[13]  Joachim Lambek Are the traditional philosophies of mathematics really incompatible? , 1994 .

[14]  V. Danilov,et al.  POLYHEDRA OF SCHEMES AND ALGEBRAIC VARIETIES , 1975 .

[15]  Локальная теория множеств@@@Local set theory , 2005 .

[16]  FUNCTIONAL SET THEORY , 1999 .

[17]  I. Moerdijk,et al.  Sheaves in geometry and logic: a first introduction to topos theory , 1992 .

[18]  S. Shelah The Future of Set Theory , 2002, math/0211397.

[19]  John L. Bell,et al.  Toposes and local set theories - an introduction , 1988 .

[20]  R. Brown,et al.  Category Theory and Higher Dimensional Algebra: potential descriptive tools in neuroscience ⁄ , 2003, math/0306223.

[21]  Michael Makkai,et al.  Accessible categories: The foundations of categorical model theory, , 2007 .

[22]  Colin McLarty,et al.  Exploring Categorical Structuralism , 2004 .

[23]  J. K. Truss BOOLEAN‐VALUED MODELS AND INDEPENDENCE PROOFS IN SET THEORY Second Edition (Oxford Logic Guides, 12) , 1986 .

[24]  Samson Abramsky,et al.  A categorical semantics of quantum protocols , 2004, Proceedings of the 19th Annual IEEE Symposium on Logic in Computer Science, 2004..

[25]  Karel Hrbacek,et al.  Standard Foundations for Nonstandard Analysis , 1992, J. Symb. Log..

[26]  Solomon Feferman,et al.  Categorical Foundations and Foundations of Category Theory , 1977 .

[27]  Erich H. Reck,et al.  Dedekind's Structuralism: An Interpretation and Partial Defense , 2003, Synthese.

[28]  Stewart Shapiro,et al.  The Oxford Handbook of Philosophy of Mathematics and Logic , 2005, Oxford handbooks in philosophy.

[29]  Erik Palmgren,et al.  Type theories, toposes and constructive set theory: predicative aspects of AST , 2002, Ann. Pure Appl. Log..

[30]  F. W. Lawvere Variable Quantities and Variable Structures in Topoi , 1976 .

[31]  M. Resnik Mathematics as a Science of Patterns: Ontology and Reference in Philosophy of Mathematics. , 1981 .

[32]  Geoffrey Hellman,et al.  Does Category Theory Provide a Framework for Mathematical Structuralism , 2003 .

[33]  Edward Nelson Internal set theory: A new approach to nonstandard analysis , 1977 .

[34]  E. Spelke,et al.  Sources of mathematical thinking: behavioral and brain-imaging evidence. , 1999, Science.

[35]  J. Bradshaw,et al.  The nature of hemispheric specialization in man , 1981, Behavioral and Brain Sciences.

[36]  Gonzalo E. Reyes,et al.  The Logical Foundations of Cognition , 1994 .

[37]  s Awodey Structure in Mathematics and Logic: A Categorical Perspective , 1996 .

[38]  P. Cartier A mad day’s work: from Grothendieck to Connes and Kontsevich The evolution of concepts of space and symmetry , 2001 .

[39]  Reuben Hersh,et al.  Non-Cantorian Set Theory , 1967 .

[40]  John L. Bell,et al.  Category Theory and the Foundations of Mathematics* , 1981, The British Journal for the Philosophy of Science.

[41]  Ieke Moerdijk,et al.  Algebraic set theory , 1995 .

[42]  W. Hatcher,et al.  Calculus is Algebra. , 1982 .

[43]  David Ellerman,et al.  Category theory and concrete universals , 1988, Erkenntnis.

[44]  J. Bell,et al.  From absolute to local mathematics , 1986, Synthese.

[45]  Joachim Lambek,et al.  What is the world of mathematics? , 2004, Ann. Pure Appl. Log..

[46]  Steve Awodey An Answer to Hellman's Question: ‘Does Category Theory Provide a Framework for Mathematical Structuralism?’† , 2004 .

[47]  A. Kock Synthetic Differential Geometry , 1981 .

[48]  Erich H. Reck,et al.  Structures And Structuralism In Contemporary Philosophy Of Mathematics , 2000, Synthese.

[49]  F. W. Lawvere,et al.  Sets for Mathematics , 2003 .

[50]  P. Aczel,et al.  Notes on constructive set theory , 1997 .

[51]  Jon Barwise,et al.  Admissible sets and structures , 1975 .

[52]  What is Categorical Structuralism , 2006 .

[53]  F. A. Muller,et al.  Sets, Classes, and Categories , 2001, The British Journal for the Philosophy of Science.

[54]  C. Drossos Structures, Points and Levels of Reality , 2005 .

[55]  F. William Lawvere,et al.  Adjointness in Foundations , 1969 .

[56]  Daniel Lehmann,et al.  Introducing the mathematical category of artificial perceptions , 1998, Annals of Mathematics and Artificial Intelligence.

[57]  Angus Macintyre Model theory: Geometrical and set-theoretic aspects and prospects , 2003, Bull. Symb. Log..

[58]  F. W. Lawvere,et al.  The Category of Categories as a Foundation for Mathematics , 1966 .

[59]  C. J. Isham,et al.  Topos Perspective on the Kochen-Specker Theorem: I. Quantum States as Generalized Valuations , 1998, quant-ph/9803055.

[60]  Peter Aczel,et al.  Non-well-founded sets , 1988, CSLI lecture notes series.

[61]  Elaine Landry,et al.  Categories in Context: Historical, Foundational, and Philosophical , 2005 .

[62]  D. Corfield Conceptual mathematics: a first introduction to categories , 2002 .

[63]  C. McLarty Learning from Questions on Categorical Foundations , 2005 .