Petrogenesis and evolution of Quaternary basaltic rocks from the Wulanhada area, North China

[1]  H. Zou,et al.  Geochemistry of Quaternary basaltic lavas from the Nuomin volcanic field, Inner Mongolia: Implications for the origin of potassic volcanic rocks in Northeastern China , 2014 .

[2]  M. Santosh,et al.  Differential destruction of the North China Craton: A tectonic perspective , 2013 .

[3]  C. You,et al.  Late Cenozoic magmatic transitions in the central Great Xing'an Range, Northeast China: Geochemical and isotopic constraints on petrogenesis , 2013 .

[4]  D. Yuen,et al.  P and SH velocity structure in the upper mantle beneath Northeast China: Evidence for a stagnant slab in hydrous mantle transition zone , 2013 .

[5]  C. Sheng Geochemical characteristics of basalts in Beilike area and its geological significance,Inner Mongolia , 2013 .

[6]  W. Fan,et al.  The genesis of Cenozoic basalts from the Jining area, northern China: Sr–Nd–Pb–Hf isotope evidence , 2012 .

[7]  Yigang Xu,et al.  Oceanic crust components in continental basalts from Shuangliao, Northeast China: Derived from the mantle transition zone? , 2012 .

[8]  G. Zellmer,et al.  Volcanic arcs as archives of plate tectonic change , 2012 .

[9]  C. Sheng Mantle peridotite xenoliths and the nature of lithospheric mantle in Abaga,Inner Mongolia , 2012 .

[10]  E. Ohtani,et al.  East Asia: Seismotectonics, magmatism and mantle dynamics , 2011 .

[11]  C. You,et al.  Geochemical characteristics of Cenozoic Jining basalts of the Western North China Craton: Evidence for the role of the lower crust, lithosphere and asthenosphere in petrogenesis , 2011 .

[12]  B. Windley,et al.  Delamination/thinning of sub-continental lithospheric mantle under Eastern China: The role of water and multiple subduction , 2010, American Journal of Science.

[13]  Jinlong Ma,et al.  Remnants of oceanic lower crust in the subcontinental lithospheric mantle: Trace element and Sr-Nd-O isotope evidence from aluminous garnet pyroxenite xenoliths from Jiaohe, Northeast China , 2010 .

[14]  W. Ernst Subduction-zone metamorphism, calc-alkaline magmatism, and convergent-margin crustal evolution , 2010 .

[15]  A. Hofmann,et al.  Carbonated mantle sources for Cenozoic intra-plate alkaline basalts in Shandong, North China , 2010 .

[16]  William M. White,et al.  Oceanic Island Basalts and Mantle Plumes: The Geochemical Perspective , 2010 .

[17]  H. Zou,et al.  U–Th isotopes in Hainan basalts: Implications for sub-asthenospheric origin of EM2 mantle endmember and the dynamics of melting beneath Hainan Island , 2010 .

[18]  K. Bell,et al.  Source of parental melts to carbonatites–critical isotopic constraints , 2010 .

[19]  Yue-heng Yang,et al.  Combined chemical separation of Lu, Hf, Rb, Sr, Sm and Nd from a single rock digest and precise and accurate isotope determinations of Lu–Hf, Rb–Sr and Sm–Nd isotope systems using Multi-Collector ICP-MS and TIMS , 2010 .

[20]  A. Hofmann,et al.  Sources of Anfengshan basalts: Subducted lower crust in the Sulu UHP belt, China , 2009 .

[21]  Yong‐Fei Zheng,et al.  Geochemical evidence for interaction between oceanic crust and lithospheric mantle in the origin of Cenozoic continental basalts in east-central China , 2009 .

[22]  F. Gaillard,et al.  Carbonatite Melts and Electrical Conductivity in the Asthenosphere , 2008, Science.

[23]  H. Zou,et al.  U–Th systematics of dispersed young volcanoes in NE China: Asthenosphere upwelling caused by piling up and upward thickening of stagnant Pacific slab , 2008 .

[24]  J. Milton,et al.  Carbonate xenoliths in La Palma: Carbonatite or alteration product? , 2008 .

[25]  Ju-Chin Chen,et al.  Elemental and Sr-Nd-Pb isotopic compositions of late Cenozoic Abaga basalts, Inner Mongolia: Implications for petrogenesis and mantle process , 2008 .

[26]  E. Stolper,et al.  Metasomatized Lithosphere and the Origin of Alkaline Lavas , 2008, Science.

[27]  M. O'hara,et al.  Global Correlations of Ocean Ridge Basalt Chemistry with Axial Depth: a New Perspective , 2008 .

[28]  R. Müller,et al.  Long-Term Sea-Level Fluctuations Driven by Ocean Basin Dynamics , 2008, Science.

[29]  B. Zhi Quaternary Volcano Cluster of Wulanhada,Right-back-banner,Chahaer,Inner Mongolia. , 2008 .

[30]  M. Hirschmann,et al.  Partial Melting Experiments of Peridotite + CO2 at 3 GPa and Genesis of Alkalic Ocean Island Basalts , 2007 .

[31]  Y. Lahaye,et al.  Experimental Melting of Carbonated Peridotite at 6-10 GPa , 2007 .

[32]  Yigang Xu Diachronous lithospheric thinning of the North China Craton and formation of the Daxin'anling–Taihangshan gravity lineament , 2007 .

[33]  B. Kjarsgaard,et al.  Craton reactivation on the Labrador Sea margins: 40Ar/39Ar age and Sr–Nd–Hf–Pb isotope constraints from alkaline and carbonatite intrusives , 2007 .

[34]  Xian‐Hua Li,et al.  Formation of the 1300-km-wide intracontinental orogen and postorogenic magmatic province in Mesozoic South China: A flat-slab subduction model , 2007 .

[35]  S. E. O'reilly,et al.  Dissolution and microbial Fe(III) reduction of nontronite (NAu-1) , 2006 .

[36]  Hong‐fu Zhang,et al.  Asthenosphere–lithospheric mantle interaction in an extensional regime: Implication from the geochemistry of Cenozoic basalts from Taihang Mountains, North China Craton , 2006 .

[37]  M. Willbold,et al.  Trace element composition of mantle end‐members: Implications for recycling of oceanic and upper and lower continental crust , 2006 .

[38]  Hersh Gilbert,et al.  Lithospheric and upper mantle structure of central Chile and Argentina , 2006 .

[39]  Jinlong Ma,et al.  Role of lithosphere-asthenosphere interaction in the genesis of Quaternary alkali and tholeiitic basalts from Datong, western North China Craton , 2005 .

[40]  G. Nowell,et al.  Volcanism in the Vitim Volcanic Field, Siberia: Geochemical Evidence for a Mantle Plume Beneath the Baikal Rift Zone , 2005 .

[41]  S. Wilde,et al.  Nature and significance of the Early Cretaceous giant igneous event in eastern China , 2005 .

[42]  Z. Wen Characteristics of mantle source for Jining Cenozoic basalts from southern Inner Mongolia:evidence from element and Sr-Nd-Pb isotopic geochemistry.Acta Petrologica , 2005 .

[43]  J. Hertogen,et al.  Potassic Magmatism in Western Sichuan and Yunnan Provinces, SE Tibet, China: Petrological and Geochemical Constraints on Petrogenesis , 2005 .

[44]  Y. Niu Generation and Evolution of Basaltic Magmas: Some Basic Concepts and a New View on the Origin of Mesozoic-Cenozoic Basaltic Volcanism in Eastern China , 2005 .

[45]  G. Markl,et al.  The Grønnedal-Ika Carbonatite-Syenite Complex, South Greenland: Carbonatite Formation by Liquid Immiscibility , 2004 .

[46]  M. Hirschmann,et al.  High-pressure partial melting of garnet pyroxenite: Possible mafic lithologies in the source of ocean island basalts , 2003 .

[47]  W. Fan,et al.  Secular evolution of the lithosphere beneath the eastern North China Craton: evidence from Mesozoic basalts and high-Mg andesites , 2003 .

[48]  M. Reid,et al.  Constraints on the origin of historic potassic basalts from northeast China by U–Th disequilibrium data , 2003 .

[49]  M. Hirschmann,et al.  Alkalic magmas generated by partial melting of garnet pyroxenite , 2003 .

[50]  J. Dawson,et al.  The brevity of carbonatite sources in the mantle: evidence from Hf isotopes , 2003 .

[51]  M. J. Carr,et al.  REE inverse modeling of HSDP2 basalts: Evidence for multiple sources in the Hawaiian plume , 2003 .

[52]  A. D. Saunders,et al.  Petrogenesis of Cenozoic Basalts from Mongolia: Evidence for the Role of Asthenospheric versus Metasomatized Lithospheric Mantle Sources , 2003 .

[53]  D. Garbe‐Schönberg,et al.  Geochemistry of oceanic carbonatites compared with continental carbonatites: mantle recycling of oceanic crustal carbonate , 2002 .

[54]  Eugene I. Smith,et al.  A mantle melting profile across the Basin and Range, SW USA , 2002 .

[55]  J. Connolly,et al.  Metamorphic devolatilization of subducted marine sediments and the transport of volatiles into the Earth's mantle , 2001, Nature.

[56]  Peter A. Cawood,et al.  Archean blocks and their boundaries in the North China Craton: lithological, geochemical, structural and P–T path constraints and tectonic evolution , 2001 .

[57]  H. Zou,et al.  Major, trace element, and Nd, Sr and Pb isotope studies of Cenozoic basalts in SE China: mantle sources, regional variations, and tectonic significance , 2000 .

[58]  D. DePaolo,et al.  Neodymium isotopes in basalts of the southwest basin and range and lithospheric thinning during continental extension , 2000 .

[59]  J. Baker,et al.  On and Off the North China Craton: Where is the Archaean Keel? , 2000 .

[60]  Sun‐Lin Chung,et al.  Trace Element and Isotope Characteristics of Cenozoic Basalts around the Tanlu Fault with Implications for the Eastern Plate Boundary between North and South China: A Reply , 1999, The Journal of Geology.

[61]  F. Albarède,et al.  Hf isotope evidence for pelagic sediments in the source of hawaiian basalts , 1999, Science.

[62]  F. Albarède,et al.  Relationships between Lu–Hf and Sm–Nd isotopic systems in the global sedimentary system , 1999 .

[63]  H. Kagami,et al.  Trace element and Nd–Sr isotope constraints on origin of the Chifeng flood basalts, North China , 1999 .

[64]  K. Putirka Melting depths and mantle heterogeneity beneath Hawaii and the East Pacific Rise: Constraints from Na/Ti and rare earth element ratios , 1999 .

[65]  S. Sokolov,et al.  Mineralogy of Crystallized Melt Inclusions from Gardiner and Kovdor Ultramafic Alkaline Complexes: Implications for Carbonatite Genesis , 1998 .

[66]  D. Green,et al.  Carbonatite metasomatism in the southeastern Australian lithosphere , 1998 .

[67]  A. D. Saunders,et al.  High precision Hf isotope measurements of MORB and OIB by thermal ionisation mass spectrometry: insights into the depleted mantle , 1998 .

[68]  Benren Zhang,et al.  Chemical composition of the continental crust as revealed by studies in East China , 1998 .

[69]  S. Haggerty,et al.  ECLOGITES AND THE METASOMATISM OF ECLOGITES FROM THE JAGERSFONTEIN KIMBERLITE : PUNCTUATED TRANSPORT AND IMPLICATIONS FOR ALKALI MAGMATISM , 1998 .

[70]  M. Menzies,et al.  Texture–Temperature–Geochemistry Relationships in the Upper Mantle as Revealed from Spinel Peridotite Xenoliths from Wangqing, NE China , 1998 .

[71]  R. Hewins,et al.  Transient Heating and Chondrule Formation: Evidence From Sodium Loss in Flash Heating Simulation Experiments , 1998 .

[72]  K. H. Wedepohl,et al.  Spinel peridotite xenoliths from the Atsagin-Dush volcano, Dariganga lava plateau, Mongolia: a record of partial melting and cryptic metasomatism in the upper mantle , 1997 .

[73]  A. Hofmann,et al.  Mantle geochemistry: the message from oceanic volcanism , 1997, Nature.

[74]  C. Coulon,et al.  The Mesozoic to Early Cenozoic Magmatism of the Benue Trough (Nigeria); Geochemical Evidence for the Involvement of the St Helena Plume , 1996 .

[75]  S. O’Reilly,et al.  Carbonate-bearing mantle peridotite xenoliths from Spitsbergen: phase relationships, mineral compositions and trace-element residence , 1996 .

[76]  G. Bebout The impact of subduction-zone metamorphism on mantle-ocean chemical cycling , 1995 .

[77]  P. Wyllie Experimental petrology of upper mantle materials, processes and products , 1995 .

[78]  M. Menzies,et al.  Potassic volcanic rocks in NE China: Geochemical constraints on mantle source and magma genesis , 1995 .

[79]  R. Sweeney Carbonatite melt compositions in the Earth's mantle , 1994 .

[80]  K. Govindaraju,et al.  1994 REPORT ON ZINNWALDITE ZW‐C ANALYSED BY NINETY‐TWO GIT‐IWG MEMBER‐LABORATORIES , 1994 .

[81]  K. Govindaraju,et al.  1994 compilation of working values and sample description for 383 geostandards , 1994 .

[82]  B. Wood,et al.  The compositions of primary carbonate melts and their evolution through wallrock reaction in the mantle , 1993 .

[83]  C. Dupuy,et al.  Carbonated peridotite xenoliths from Spitsbergen: implications for trace element signature of mantle carbonate metasomatism , 1993 .

[84]  K. Hirose,et al.  Partial melting of dry peridotites at high pressures: Determination of compositions of melts segregated from peridotite using aggregates of diamond , 1993 .

[85]  M. Menzies,et al.  Palaeozoic and Cenozoic lithoprobes and the loss of >120 km of Archaean lithosphere, Sino-Korean craton, China , 1993, Geological Society, London, Special Publications.

[86]  Gerhard Franz,et al.  Fluid variability in 2 GPa eclogites as an indicator of fluid behavior during subduction , 1992 .

[87]  C. Dupuy,et al.  Zr/hf fractionation in intraplate basaltic rocks: Carbonate metasomatism in the mantle source , 1992 .

[88]  C. Langmuir,et al.  Petrological systematics of mid-ocean ridge basalts: Constraints on melt generation beneath ocean ridges , 1992 .

[89]  F. Albarède,et al.  The evolution of Mauna Kea Volcano, Hawaii: Petrogenesis of tholeiitic and alkalic basalts , 1991 .

[90]  P. Hooper,et al.  The Cenozoic Basaltic Rocks of Eastern China: Petrology and Chemical Composition , 1991 .

[91]  A. Basu,et al.  Major element, REE, and Pb, Nd and Sr isotopic geochemistry of Cenozoic volcanic rocks of eastern China : implications for their origin from suboceanic-type mantle reservoirs , 1991 .

[92]  R. Carlson,et al.  Sr, Nd, and Pb isotopic compositions of Hainan basalts (south China): Implications for a subcontinental lithosphere Dupal source , 1991 .

[93]  Yan Song,et al.  Isotopic characteristics of Hannuoba basalts, eastern China: Implications for their petrogenesis and the composition of subcontinental mantle , 1990 .

[94]  Yan Song,et al.  Geochemistry of Hannuoba basalts, eastern China: Constraints on the origin of continental alkalic and tholeiitic basalt , 1990 .

[95]  N. Arndt,et al.  Pb isotopic compositions of Archean komatiites and sulfides , 1990 .

[96]  P. Hooper,et al.  The Mineral Chemistry of Ultramafic Xenoliths of Eastern China: Implications for Upper Mantle Composition and the Paleogeotherms , 1989 .

[97]  A. Woolley,et al.  Carbonatites: nomenclature, average chemical compositions, and element distribution , 1989 .

[98]  W. McDonough,et al.  Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes , 1989, Geological Society, London, Special Publications.

[99]  J. Adam Dry, Hydrous, and CO2-Bearing Liquidus Phase Relationships in the Cmas System at 28 Kb, and Their Bearing on the Origin of Alkali Basalts , 1988, The Journal of Geology.

[100]  A. Chivas,et al.  Geochemical and isotopic systematics in carbonatites and implications for the evolution of ocean-island sources , 1988 .

[101]  A. Hofmann,et al.  Nb and Pb in oceanic basalts: new constraints on mantle evolution , 1986 .

[102]  R. W. Le Maitre,et al.  A Chemical Classification of Volcanic Rocks Based on the Total Alkali-Silica Diagram , 1986 .

[103]  R. Zartman,et al.  Pb-, Sr- and Nd-isotopic systematics and chemical characteristics of Cenozoic basalts, eastern China , 1986 .

[104]  S. Hart A large-scale isotope anomaly in the Southern Hemisphere mantle , 1984, Nature.

[105]  R. Armstrong,et al.  Cenozoic volcanic rocks of eastern China — secular and geographic trends in chemistry and strontium isotopic composition , 1982 .

[106]  G. Brey Origin of olivine melilitites — chemical and experimental constraints , 1978 .

[107]  T. Irvine,et al.  A Guide to the Chemical Classification of the Common Volcanic Rocks , 1971 .