Logical, Metric, and Algorithmic Characterisations of Probabilistic Bisimulation

Many behavioural equivalences or preorders for probabilistic processes involve a lifting operation that turns a relation on states into a relation on distributions of states. We show that several existing proposals for lifting relations can be reconciled to be different presentations of essentially the same lifting operation. More interestingly, this lifting operation nicely corresponds to the Kantorovich metric, a fundamental concept used in mathematics to lift a metric on states to a metric on distributions of states, besides the fact the lifting operation is related to the maximum flow problem in optimisation theory. The lifting operation yields a neat notion of probabilistic bisimulation, for which we provide logical, metric, and algorithmic characterisations. Specifically, we extend the Hennessy-Milner logic and the modal mu-calculus with a new modality, resulting in an adequate and an expressive logic for probabilistic bisimilarity, respectively. The correspondence of the lifting operation and the Kantorovich metric leads to a natural characterisation of bisimulations as pseudometrics which are post-fixed points of a monotone function. We also present an “on the fly” algorithm to check if two states in a finitary system are related by probabilistic bisimilarity, exploiting the close relationship between the lifting operation and the maximum flow problem.

[1]  Nancy A. Lynch,et al.  Probabilistic Simulations for Probabilistic Processes , 1994, Nord. J. Comput..

[2]  Carroll Morgan,et al.  Testing finitary probabilistic processes (extended abstract) , 2009 .

[3]  Wang Yi,et al.  Testing preorders for probabilistic processes can be characterized by simulations , 2002, Theor. Comput. Sci..

[4]  Radha Jagadeesan,et al.  Metrics for labelled Markov processes , 2004, Theor. Comput. Sci..

[5]  Joël Ouaknine,et al.  Axioms for Probability and Nondeterminism , 2004, EXPRESS.

[6]  Markus Müller-Olm Derivation of Characteristic Formulae , 1998, Electron. Notes Theor. Comput. Sci..

[7]  Carroll Morgan,et al.  Characterising Testing Preorders for Finite Probabilistic Processes , 2007, 22nd Annual IEEE Symposium on Logic in Computer Science (LICS 2007).

[8]  James Worrell,et al.  An Algorithm for Quantitative Verification of Probabilistic Transition Systems , 2001, CONCUR.

[9]  Arthur Cayley,et al.  The Collected Mathematical Papers: On Monge's “Mémoire sur la théorie des déblais et des remblais” , 2009 .

[10]  David A. Bader,et al.  Graph Algorithms , 2011, Encyclopedia of Parallel Computing.

[11]  François Laviolette,et al.  Approximate Analysis of Probabilistic Processes: Logic, Simulation and Games , 2008, 2008 Fifth International Conference on Quantitative Evaluation of Systems.

[12]  Klaus Keimel,et al.  Semantic Domains for Combining Probability and Non-Determinism , 2005, Electronic Notes in Theoretical Computer Science.

[13]  Annabelle McIver,et al.  Results on the quantitative mu-calculus qMu , 2003, ArXiv.

[14]  Kim G. Larsen,et al.  Bisimulation through Probabilistic Testing , 1991, Inf. Comput..

[15]  Jim Freeman Probability Metrics and the Stability of Stochastic Models , 1991 .

[16]  James Worrell,et al.  Approximating and computing behavioural distances in probabilistic transition systems , 2006, Theor. Comput. Sci..

[17]  James Worrell,et al.  Towards Quantitative Verification of Probabilistic Transition Systems , 2001, ICALP.

[18]  Martin L. Puterman,et al.  Markov Decision Processes: Discrete Stochastic Dynamic Programming , 1994 .

[19]  Ivan Christoff,et al.  Testing Equivalences and Fully Abstract Models for Probabilistic Processes , 1990, CONCUR.

[20]  Wang Yi,et al.  Testing and Refinement for Nondeterministic and Probabilistic Processes , 1994, FTRTFT.

[21]  Roberto Segala,et al.  Logical Characterizations of Bisimulations for Discrete Probabilistic Systems , 2007, FoSSaCS.

[22]  James Worrell,et al.  Recursively defined metric spaces without contraction , 2007, Theor. Comput. Sci..

[23]  Gavin Lowe,et al.  Probabilistic and Prioritized Models of Timed CSP , 1995, Theor. Comput. Sci..

[24]  Doina Precup,et al.  Metrics for Finite Markov Decision Processes , 2004, AAAI.

[25]  Carroll Morgan,et al.  Scalar Outcomes Suffice for Finitary Probabilistic Testing , 2007, ESOP.

[26]  Bernhard Steffen,et al.  Characteristic Formulae for Processes with Divergence , 1994, Inf. Comput..

[27]  Alan Bundy,et al.  Constructing Induction Rules for Deductive Synthesis Proofs , 2006, CLASE.

[28]  Michael Huth,et al.  Quantitative analysis and model checking , 1997, Proceedings of Twelfth Annual IEEE Symposium on Logic in Computer Science.

[29]  Carroll Morgan,et al.  Remarks on Testing Probabilistic Processes , 2007, Computation, Meaning, and Logic.

[30]  Abbas Edalat,et al.  A logical characterization of bisimulation for labeled Markov processes , 1998, Proceedings. Thirteenth Annual IEEE Symposium on Logic in Computer Science (Cat. No.98CB36226).

[31]  James Worrell,et al.  A behavioural pseudometric for probabilistic transition systems , 2005, Theor. Comput. Sci..

[32]  Laurent Mounier,et al.  Verifying Bisimulations "On the Fly" , 1990, FORTE.

[33]  Anatoly M. Vershik,et al.  Kantorovich Metric: Initial History and Little-Known Applications , 2005 .

[34]  Bengt Jonsson,et al.  A calculus for communicating systems with time and probabilities , 1990, [1990] Proceedings 11th Real-Time Systems Symposium.

[35]  U. Rieder,et al.  Markov Decision Processes , 2010 .

[36]  Wang Yi,et al.  Compositional testing preorders for probabilistic processes , 1995, Proceedings of Tenth Annual IEEE Symposium on Logic in Computer Science.

[37]  Wang Yi,et al.  Probabilistic Extensions of Process Algebras , 2001, Handbook of Process Algebra.

[38]  Amir Pnueli,et al.  Linear and Branching Structures in the Semantics and Logics of Reactive Systems , 1985, ICALP.

[39]  Yuxin Deng,et al.  Characterising Probabilistic Processes Logically , 2010, ArXiv.

[40]  Radha Jagadeesan,et al.  Metrics for Labeled Markov Systems , 1999, CONCUR.

[41]  Huimin Lin "On-the-fly Instantiation" of Value-passing Processes , 1998, FORTE.

[42]  Yuxin Deng,et al.  A Local Algorithm for Checking Probabilistic Bisimilarity , 2009, 2009 Fourth International Conference on Frontier of Computer Science and Technology.

[43]  Annabelle McIver,et al.  Results on the quantitative μ-calculus qMμ , 2007, TOCL.

[44]  James B. Orlin,et al.  A faster strongly polynomial minimum cost flow algorithm , 1993, STOC '88.

[45]  Scott A. Smolka,et al.  Algebraic Reasoning for Probabilistic Concurrent Systems , 1990, Programming Concepts and Methods.

[46]  Doina Precup,et al.  Metrics for Markov Decision Processes with Infinite State Spaces , 2005, UAI.

[47]  Roberto Segala,et al.  Modeling and verification of randomized distributed real-time systems , 1996 .

[48]  James Worrell,et al.  An Accessible Approach to Behavioural Pseudometrics , 2005, ICALP.

[49]  Radha Jagadeesan,et al.  The metric analogue of weak bisimulation for probabilistic processes , 2002, Proceedings 17th Annual IEEE Symposium on Logic in Computer Science.

[50]  Dexter Kozen,et al.  RESULTS ON THE PROPOSITIONAL’p-CALCULUS , 2001 .

[51]  Kim G. Larsen,et al.  Compositional Verification of Probabilistic Processes , 1992, CONCUR.

[52]  Robin Milner,et al.  Algebraic laws for nondeterminism and concurrency , 1985, JACM.

[53]  Pierre Ugo Tournoux,et al.  At the Y , 2019, The Hundreds.

[54]  Christel Baier,et al.  Deciding Bisimilarity and Similarity for Probabilistic Processes , 2000, J. Comput. Syst. Sci..

[55]  Alison L Gibbs,et al.  On Choosing and Bounding Probability Metrics , 2002, math/0209021.

[56]  Robin Milner,et al.  Communication and concurrency , 1989, PHI Series in computer science.

[57]  Tom Chothia,et al.  Metrics for Action-labelled Quantitative Transition Systems , 2006, QAPL.

[58]  G. Burton TOPICS IN OPTIMAL TRANSPORTATION (Graduate Studies in Mathematics 58) By CÉDRIC VILLANI: 370 pp., US$59.00, ISBN 0-8218-3312-X (American Mathematical Society, Providence, RI, 2003) , 2004 .

[59]  Roberto Segala,et al.  Axiomatizations for Probabilistic Bisimulation , 2001, ICALP.

[60]  Lijun Zhang,et al.  Flow Faster: Efficient Decision Algorithms for Probabilistic Simulations , 2007, Log. Methods Comput. Sci..

[61]  David Park,et al.  Concurrency and Automata on Infinite Sequences , 1981, Theoretical Computer Science.

[62]  A. Tarski A LATTICE-THEORETICAL FIXPOINT THEOREM AND ITS APPLICATIONS , 1955 .

[63]  Kurt Mehlhorn,et al.  Can A Maximum Flow be Computed on o(nm) Time? , 1990, ICALP.

[64]  James Worrell,et al.  Approximating a Behavioural Pseudometric without Discount for Probabilistic Systems , 2007, Log. Methods Comput. Sci..

[65]  Yuxin Deng,et al.  Probabilistic Barbed Congruence , 2007, QAPL.

[66]  Rance Cleaveland,et al.  Probabilistic temporal logics via the modal mu-calculus , 1999, Theor. Comput. Sci..

[67]  Wang Yi,et al.  Testing Probabilistic and Nondeterministic Processes , 1992, PSTV.

[68]  Klaus Keimel,et al.  Semantic Domains for Combining Probability and Non-Determinism , 2005, Electron. Notes Theor. Comput. Sci..

[69]  Yuxin Deng,et al.  The Kantorovich Metric in Computer Science: A Brief Survey , 2009, QAPL.